Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 13: 4, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800056

RESUMEN

Neurotrophins (NTs) are secretory proteins that bind to target receptors and influence many cellular functions, such as cell survival and cell death in neurons. The mammalian NT brain-derived neurotrophic factor (matBDNF) is the C-terminal mature form released by cleavage from the proBDNF precursor. The binding of matBDNF to the tyrosine kinase receptor B (TrkB) activates different signaling cascades and leads to neuron survival and plasticity, while the interaction of proBDNF with the p75 NT receptor (p75NTR)/sortilin receptor complex has been highly involved in apoptosis. Many studies have demonstrated that prolonged seizures such as status epilepticus (SE) induce changes in the expression of NT, pro-NT, and their receptors. We have previously described that the blockage of both matBDNF and proBDNF signaling reduces neuronal death after SE in vivo (Unsain et al., 2008). We used an in vitro model as well as an in vivo model of SE to determine the specific role of TrkB and proBDNF signaling during neuronal cell death. We found that the matBDNF sequestering molecule TrkB-Fc induced an increase in neuronal death in both models of SE, and it also prevented a decrease in TrkB levels. Moreover, SE triggered the interaction between proBDNF and p75NTR, which was not altered by sequestering matBDNF. The intra-hippocampal administration of TrkB-Fc, combined with an antibody against proBDNF, prevented neuronal degeneration. In addition, we demonstrated that proBDNF binding to p75NTR exacerbates neuronal death when matBDNF signaling is impaired through TrkB. Our results indicated that both the mature and the precursor forms of BDNF may have opposite effects depending on the scenario in which they function and the signaling pathways they activate.

2.
J Neurochem ; 111(2): 428-40, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19686240

RESUMEN

Brain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans. We have recently described a strong correlation between TrkB decrease and p75ntr increase with neuronal degeneration (Neuroscience 154:978, 2008). In this report, we report that local, acute intra-hippocampal infusion of function-blocking antibodies against BDNF prevented both early TrkB down-regulation and neuronal degeneration after SE. Conversely, the infusion of recombinant human BDNF protein after SE greatly increased neuronal degeneration. The inhibition of BDNF mRNA translation by the infusion of antisense oligonucleotides induced a rapid decrease of BDNF protein levels, and a delayed increase. If seizures were induced at the time endogenous BDNF was decreased, SE-induced neuronal damage was prevented. On the other hand, if seizures were induced at the time endogenous BDNF was increased, SE-induced neuronal damage was exacerbated. These results indicate that under a pathological condition BDNF exacerbates neuronal injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/metabolismo , Neuronas/patología , Receptor trkB/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Animales , Anticuerpos/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/inmunología , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Agonistas Muscarínicos/toxicidad , Oligorribonucleótidos Antisentido/farmacología , Pilocarpina/toxicidad , Precursores de Proteínas/inmunología , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Estado Epiléptico/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA