Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 4(6)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796567

RESUMEN

Bacterial small noncoding RNAs (sRNAs) play posttranscriptional regulatory roles in cellular responses to changing environmental cues and in adaptation to harsh conditions. Generally, the RNA-binding protein Hfq helps sRNAs associate with target mRNAs to modulate their translation and to modify global RNA pools depending on physiological state. Here, a combination of in vivo UV cross-linking immunoprecipitation followed by high-throughput sequencing (CLIP-seq) and total RNA-seq showed that Hfq interacts with different regions of the Pseudomonas aeruginosa transcriptome under planktonic versus biofilm conditions. In the present approach, P. aeruginosa Hfq preferentially interacted with repeats of the AAN triplet motif at mRNA 5' untranslated regions (UTRs) and sRNAs and U-rich sequences at rho-independent terminators. Further transcriptome analysis suggested that the association of sRNAs with Hfq is primarily a function of their expression levels, strongly supporting the notion that the pool of Hfq-associated RNAs is equilibrated by RNA concentration-driven cycling on and off Hfq. Overall, our combinatorial CLIP-seq and total RNA-seq approach highlights conditional sRNA associations with Hfq as a novel aspect of posttranscriptional regulation in P. aeruginosa IMPORTANCE The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome.

2.
PLoS One ; 14(4): e0215986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31039177

RESUMEN

Haloferax volcanii is a well-established model species for haloarchaea. Small scale RNomics and bioinformatics predictions were used to identify small non-coding RNAs (sRNAs), and deletion mutants revealed that sRNAs have important regulatory functions. A recent dRNA-Seq study was used to characterize the primary transcriptome. Unexpectedly, it was revealed that, under optimal conditions, H. volcanii contains more non-coding sRNAs than protein-encoding mRNAs. However, the dRNA-Seq approach did not contain any length information. Therefore, a mixed RNA-Seq approach was used to determine transcript length and to identify additional transcripts, which are not present under optimal conditions. In total, 50 million paired end reads of 150 nt length were obtained. 1861 protein-coding RNAs (cdRNAs) were detected, which encoded 3092 proteins. This nearly doubled the coverage of cdRNAs, compared to the previous dRNA-Seq study. About 2/3 of the cdRNAs were monocistronic, and 1/3 covered more than one gene. In addition, 1635 non-coding sRNAs were identified. The highest fraction of non-coding RNAs were cis antisense RNAs (asRNAs). Analysis of the length distribution revealed that sRNAs have a median length of about 150 nt. Based on the RNA-Seq and dRNA-Seq results, genes were chosen to exemplify characteristics of the H. volcanii transcriptome by Northern blot analyses, e.g. 1) the transcript patterns of gene clusters can be straightforward, but also very complex, 2) many transcripts differ in expression level under the four analyzed conditions, 3) some genes are transcribed into RNA isoforms of different length, which can be differentially regulated, 4) transcripts with very long 5'-UTRs and with very long 3'-UTRs exist, and 5) about 30% of all cdRNAs have overlapping 3'-ends, which indicates, together with the asRNAs, that H. volcanii makes ample use of sense-antisense interactions. Taken together, this RNA-Seq study, together with a previous dRNA-Seq study, enabled an unprecedented view on the H. volcanii transcriptome.


Asunto(s)
Haloferax volcanii/crecimiento & desarrollo , Haloferax volcanii/genética , RNA-Seq , Transcriptoma/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Regulación de la Expresión Génica Arqueal , Familia de Multigenes , Sistemas de Lectura Abierta/genética , Operón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
3.
Nucleic Acids Res ; 46(18): 9684-9698, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29986115

RESUMEN

We present the first high-resolution determination of transcriptome architecture in the priority pathogen Acinetobacter baumannii. Pooled RNA from 16 laboratory conditions was used for differential RNA-seq (dRNA-seq) to identify 3731 transcriptional start sites (TSS) and 110 small RNAs, including the first identification in A. baumannii of sRNAs encoded at the 3' end of coding genes. Most sRNAs were conserved among sequenced A. baumannii genomes, but were only weakly conserved or absent in other Acinetobacter species. Single nucleotide mapping of TSS enabled prediction of -10 and -35 RNA polymerase binding sites and revealed an unprecedented base preference at position +2 that hints at an unrecognized transcriptional regulatory mechanism. To apply functional genomics to the problem of antimicrobial resistance, we dissected the transcriptional regulation of the drug efflux pump responsible for chloramphenicol resistance, craA. The two craA promoters were both down-regulated >1000-fold when cells were shifted to nutrient limited medium. This conditional down-regulation of craA expression renders cells sensitive to chloramphenicol, a highly effective antibiotic for the treatment of multidrug resistant infections. An online interface that facilitates open data access and visualization is provided as 'AcinetoCom' (http://bioinf.gen.tcd.ie/acinetocom/).


Asunto(s)
Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , ARN Bacteriano/genética , Transcriptoma/genética , Acinetobacter baumannii/efectos de los fármacos , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...