RESUMEN
A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.
Asunto(s)
Células Dendríticas , Macrófagos , Mycobacterium tuberculosis , Sitios de Carácter Cuantitativo , Tuberculosis , Humanos , Perú , Tuberculosis/genética , Tuberculosis/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/genética , Femenino , Células Dendríticas/metabolismo , Masculino , Adulto , Predisposición Genética a la Enfermedad , Variación Genética , Regulación de la Expresión Génica , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Perfilación de la Expresión GénicaRESUMEN
Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.
Asunto(s)
Predisposición Genética a la Enfermedad , Células T de Memoria , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Perú , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.
Asunto(s)
Memoria Inmunológica , Mycobacterium tuberculosis/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Perú , RNA-Seq , Factores Sexuales , Análisis de la Célula Individual , Factores Socioeconómicos , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/microbiología , Adulto JovenRESUMEN
The non-polymorphic nature of CD1 proteins creates a situation in which T cells with invariant T cell receptors (TCRs), like CD1d-specific NKT cells, are present in all humans. CD1b is an abundant protein on human dendritic cells that presents M. tuberculosis (Mtb) lipid antigens to T cells. Analysis of T cell clones suggested that semi-invariant TCRs exist in the CD1b system, but their prevalence in humans is not known. Here we used CD1b tetramers loaded with mycolic acid or glucose monomycolate to study polyclonal T cells from 150 Peruvian subjects. We found that CD1b tetramers loaded with mycolic acid or glucose monomycolate antigens stained TRAV1-2+ GEM T cells or TRBV4-1+ LDN5-like T cells in the majority of subjects tested, at rates ~10-fold lower than NKT cells. Thus, GEM T cells and LDN5-like T cells are a normal part of the human immune system. Unlike prior studies measuring MHC- or CD1b-mediated activation, this large-scale tetramer study found no significant differences in rates of CD1b tetramer-mycobacterial lipid staining of T cells among subjects with Mtb exposure, latent Mtb infection or active tuberculosis (TB) disease. In all subjects, including "uninfected" subjects, CD1b tetramer+ T cells expressed memory markers at high levels. However, among controls with lower mycobacterial antigen exposure in Boston, we found significantly lower frequencies of T cells staining with CD1b tetramers loaded with mycobacterial lipids. These data link CD1b-specific T cell detection to mycobacterial exposure, but not TB disease status, which potentially explains differences in outcomes among CD1-based clinical studies, which used control subjects with low Mtb exposure.
Asunto(s)
Antígenos CD1/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Adulto , Antígenos CD1/química , Femenino , Glucolípidos/inmunología , Humanos , Antígenos Comunes de Leucocito/análisis , Masculino , Persona de Mediana Edad , Ácidos Micólicos/inmunología , Receptores de Antígenos de Linfocitos T/fisiologíaRESUMEN
Of the 1.8 billion people worldwide infected with Mycobacterium tuberculosis, 5-15% will develop active tuberculosis (TB). Approximately half will progress to active TB within the first 18 months after infection, presumably because they fail to mount an effective initial immune response. Here, in a genome-wide genetic study of early TB progression, we genotype 4002 active TB cases and their household contacts in Peru. We quantify genetic heritability ([Formula: see text]) of early TB progression to be 21.2% (standard error 0.08). This suggests TB progression has a strong genetic basis, and is comparable to traits with well-established genetic bases. We identify a novel association between early TB progression and variants located in a putative enhancer region on chromosome 3q23 (rs73226617, OR = 1.18; P = 3.93 × 10-8). With in silico and in vitro analyses we identify rs73226617 or rs148722713 as the likely functional variant and ATP1B3 as a potential causal target gene with monocyte specific function.
Asunto(s)
Progresión de la Enfermedad , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/genética , Adulto , Femenino , Expresión Génica , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Monocitos , Mycobacterium tuberculosis/genética , Perú , ATPasa Intercambiadora de Sodio-Potasio/genéticaRESUMEN
Cytolytic T lymphocytes play an important role in host defense against viral infections, including human immunodeficiency virus (HIV). In a phase I clinical trial (protocol 080 of the AIDS Clinical Trials Group), generation of CD8+ effector cells from peripheral blood of patients with acquired immunodeficiency syndrome (AIDS)-related complex (ARC) or AIDS and safety of autologous adoptive transfer of these cells were evaluated. For therapeutic infusions, CD8+ T cells were purified by positive selection on anti-CD8 monoclonal antibody-coated flasks from leukapheresed peripheral blood of seven patients. These CD8+ T cells were cultured in the presence of interleukin-2 and phytohemagglutinin for up to 3 weeks to obtain cells sufficient for therapeutic infusions (10(8) to 10(10)). All 31 cell cultures established from the seven patients and used for therapy were highly enriched in CD8+ (mean, 97%), CD8+HLA-DR+ (50%), cytotoxic CD8+CD11b- (82%), and memory CD29+ (78%) T lymphocytes. In vitro expanded CD8+ cells had excellent cytotoxic function at the time they were used for therapy, including HIV-specific activity against autologous targets infected with vaccinia vectors expressing HIV-IIIb antigens, gag, pol, and env. Anti-HIV activity of cultured CD8+ cells was significantly higher than that of autologous fresh peripheral blood lymphocytes. Our results show that CD8+ T lymphocytes obtained from peripheral blood of symptomatic HIV-infected patients can be purified, cultured to obtain large numbers of cells with enhanced anti-HIV activity, and safely infused into patients with AIDS as a form of immunotherapy.