Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 979: 176822, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047965

RESUMEN

BACKGROUND & AIMS: The treatment of cardiovascular diseases (CVD) could greatly benefit from using nitric oxide (NO) donors. This study aimed to investigate the mechanisms of action of NONO2P that contribute to the observed responses in the mesenteric artery. The hypothesis was that NONO2P would have similar pharmacological actions to sodium nitroprusside (SNP) and NO. METHODS: Male Wistar rats were euthanized to isolate the superior mesenteric artery for isometric tension recordings. NO levels were measured using the DAF-FM/DA dye, and cyclic guanosine monophosphate (cGMP) levels were determined using a cGMP-ELISA Kit. RESULTS: NONO2P presented a similar maximum efficacy to SNP. The free radical of NO (NO•) scavengers (PTIO; 100 µM and hydroxocobalamin; 30 µM) and nitroxyl anion (NO-) scavenger (L-cysteine; 3 mM) decreased relaxations promoted by NONO2P. The presence of the specific soluble guanylyl cyclase (sGC) inhibitor (ODQ; 10 µM) nearly abolished the vasorelaxation. The cGMP-dependent protein kinase (PKG) inhibition (KT5823; 1 µM) attenuated the NONO2P relaxant effect. The vasorelaxant response was significantly attenuated by blocking inward rectifying K+ channels (Kir), voltage-operated K+ channels (KV), and large conductance Ca2+-activated K+ channels (BKCa). NONO2P-induced relaxation was attenuated by cyclopiazonic acid (10 µM), indicating that sarcoplasmic reticulum Ca2+-ATPase (SERCA) activation is involved in this relaxation. Moreover, NONO2P increased NO levels in endothelial cells and cGMP production. CONCLUSIONS: NONO2P induces vasorelaxation with the same magnitude as SNP, releasing NO• and NO-. Its vasorelaxant effect involves sGC, PKG, K+ channels opening, and SERCA activation, suggesting its potential as a therapeutic option for CVD.

2.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364149

RESUMEN

Cardiovascular diseases (CVD) are the deadliest noncommunicable disease worldwide. Hypertension is the most prevalent risk factor for the development of CVD. Although there is a wide range of antihypertensive drugs, there still remains a lack of blood pressure control options for hypertensive patients. Additionally, natural products remain crucial to the design of new drugs. The natural product 7-hydroxycoumarin (7-HC) exhibits pharmacological properties linked to antihypertensive mechanisms of action. This study aimed to evaluate the vascular effects of 7-HC in an experimental model of essential hypertension. The isometric tension measurements assessed the relaxant effect induced by 7-HC (0.001 µM-300 µM) in superior mesenteric arteries isolated from hypertensive rats (SHR, 200-300 g). Our results suggest that the relaxant effect induced by 7-HC rely on K+-channels (KATP, BKCa, and, to a lesser extent, Kv) activation and also on Ca2+ influx from sarcolemma and sarcoplasmic reticulum mobilization (inositol 1,4,5-triphosphate (IP3) and ryanodine receptors). Moreover, 7-HC diminishes the mesenteric artery's responsiveness to α1-adrenergic agonist challenge and improves the actions of the muscarinic agonist and NO donor. The present work demonstrated that the relaxant mechanism of 7-HC in SHR involves endothelium-independent vasorelaxant factors. Additionally, 7-HC reduced vasoconstriction of the sympathetic agonist while improving vascular endothelium-dependent and independent relaxation.


Asunto(s)
Hipertensión , Vasodilatación , Ratas , Animales , Canales de Potasio/metabolismo , Hipertensión Esencial , Ratas Endogámicas SHR , Vasodilatadores/farmacología , Endotelio Vascular/metabolismo , Antihipertensivos/farmacología , Umbeliferonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...