Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1303937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384464

RESUMEN

Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective: To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods: Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1ß, and TNF-α spinal levels. Results: The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion: Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.


Asunto(s)
Proteína HMGB1 , Neuralgia , Animales , Masculino , Ratones , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuralgia/inducido químicamente , Neuralgia/metabolismo , FN-kappa B , Paclitaxel/toxicidad , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor Toll-Like 4/metabolismo
2.
Polymers (Basel) ; 13(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34771392

RESUMEN

This study offers a novel oral pregabalin (PG)-loaded drug delivery system based on chitosan and hypromellose phthalate-based polymeric nanocomposite in order to treat neuropathic pain (PG-PN). PG-PN has a particle size of 432 ± 20 nm, a polydispersity index of 0.238 ± 0.001, a zeta potential of +19.0 ± 0.9 mV, a pH of 5.7 ± 0.06, and a spherical shape. Thermal and infrared spectroscopy confirmed nanocomposite generation. PG-PN pharmacokinetics was studied after a single oral dose in male Wistar rats. PG-PN showed greater distribution and clearance than free PG. The antinociceptive effect of PG-PN in neuropathic pain rats was tested by using the chronic constriction injury model. The parameter investigated was the mechanical nociceptive threshold measured by the von Frey filaments test; PG-PN showed a longer antinociceptive effect than free PG. The rota-rod and barbiturate sleep induction procedures were used to determine adverse effects; the criteria included motor deficit and sedative effects. PG-PN and free PG had plenty of motors. PG-PN exhibited a less sedative effect than free PG. By prolonging the antinociceptive effect and decreasing the unfavorable effects, polymeric nanocomposites with pregabalin have shown promise in treating neuropathic pain.

3.
Eur J Pharm Sci ; 163: 105856, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33882329

RESUMEN

This work proposes new methotrexate (MTX) loaded drug delivery systems (DDS) to treat rheumatoid arthritis via the intra-articular route: a poloxamer based thermosensitive hydrogel (MTX-HG), oligochitosan and hypromellose phthalate-based polyelectrolyte complexes (MTX-PEC) and their association (MTX-PEC-HG). MTX-PEC showed 470 ± 166 nm particle size, 0.298 ± 0.108 polydispersity index, +26 ± 2 mV and 74.3 ± 5.8% MTX efficiency entrapment and particle formation was confirmed by infrared spectroscopy and thermal analysis. MTX-HG and MTX-PEC-HG gelled at 36.7°C. MTX drug release profile was prolonged for MTX-HG and MTX-PEC-HG, and faster for MTX-PEC and free MTX. The in vivo effect of the MTX-DDSs systems was evaluated in induced arthritis rats as single intra-articular dose. The assessed parameters were the mechanical nociceptive threshold, the plasmatic IL-1ß level and histological analysis of the tibiofemoral joint. MTX-HG and MTX-PEC-HG performance were similar to free MTX and worse than oral MTX, used as positive control. All DDSs showed some irritative effect, for which further studies are required. MTX-PEC was the best treatment on recovering cartilage damage and decreasing allodynia. Thus, MTX-PEC demonstrated potential to treat rheumatoid arthritis, with the possibility of decreasing the systemic exposure to the drug.


Asunto(s)
Artritis Reumatoide , Metotrexato , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Liberación de Fármacos , Hidrogeles , Polielectrolitos , Ratas
4.
Eur J Pharmacol ; 875: 173039, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32119843

RESUMEN

Neuropathic pain is a chronic pain characterized by injury to the central or peripheral nervous system and that most often causes disability in individuals. Among the mechanisms involved in central sensitization during neuropathic pain are cytokines and chemokines released by spinal glial cells; however, these mechanisms are not well elucidated. Thus, the present study aimed to investigate the involvement of Chemokine (C-X-C motif) ligand 1 (CXCL1) and glial cells in this process. Male Wistar rats weighing 220-240 g were used and underwent a neuropathic pain model induced by chronic constriction injury (CCI). To investigate the involvement of CXCL1, chemokine receptor type 2 (CXCR2), mitogen-activated protein kinases (MAPK) p38, and microglia and astrocytes, the following drugs were used: SB225002, an CXCR2 antagonist; SML0543, a MAPK p38 inhibitor; minocycline, a microglia inhibitor; fluorocitrate, an astrocytes inhibitor; and recombinant CXCL1. The microglia, astrocytes, CXCL1, and MAPK p38 protein levels was evaluated by a Western blot assay. Furthermore, an immunofluorescence assay was performed to localize microglia and astrocytes immunoreactivity in the spinal cord. The results demonstrated that both CCI and CXCL1 induced nociception, and this effect was reversed by SB225002. In addition, minocycline, fluorocitrate, and SML0543 reversed the mechanical allodynia induced by CCI. Furthermore, there was an increase of spinal CXCL1 and microglial marker Iba1 protein levels , which was reversed by SB225002. This antagonist also reduced the Iba1 immunoreactivity in spinal cord. Thus, the present study suggests that the CXCL1 chemokine participates in neuropathic pain through CXCR2 activation in spinal microglia.


Asunto(s)
Quimiocina CXCL1/metabolismo , Microglía/metabolismo , Neuralgia/patología , Nocicepción/fisiología , Médula Espinal/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Quimiocina CXCL1/administración & dosificación , Citratos/administración & dosificación , Modelos Animales de Enfermedad , Humanos , Inyecciones Espinales , Masculino , Microglía/efectos de los fármacos , Minociclina/administración & dosificación , Neuralgia/inducido químicamente , Nocicepción/efectos de los fármacos , Compuestos de Fenilurea/administración & dosificación , Ratas , Receptores de Interleucina-8B/antagonistas & inhibidores , Receptores de Interleucina-8B/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA