Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Omics ; 20(1): 37-47, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37782107

RESUMEN

Dietary methionine restriction is associated with a reduction in tumor growth in preclinical studies and an increase in lifespan in animal models. The mechanism by which methionine restriction inhibits tumor growth while sparing normal cells is incompletely understood. We do know that normal cells can utilize methionine or homocysteine interchangeably (methionine independence) while most cancer cells are strictly dependent on methionine availability. Here, we compared a typical methionine dependent and a rare methionine independent melanoma cell line. We show that replacing methionine, a methyl donor, with its precursor homocysteine generally induced hypomethylation in gene promoters. This decrease was similar in methionine dependent and methionine independent cells. There was only a low level of pathway enrichment, suggesting that the hypomethylation is generalized rather than gene specific. Whole proteome and transcriptome were also analyzed. This analysis revealed that contrarily to the effect on methylation, the replacement of methionine with homocysteine had a much greater effect on the transcriptome and proteome of methionine dependent cells than methionine independent cells. Interestingly, methionine adenosyltransferase 2A (MAT2A), responsible for the synthesis of S-adenosylmethionine from methionine, was equally strongly upregulated in both cell lines. This suggests that the absence of methionine is equally detected but triggers different outcomes in methionine dependent versus independent cells. Our analysis reveals the importance of cell cycle control, DNA damage repair, translation, nutrient sensing, oxidative stress and immune functions in the cellular response to methionine stress in melanoma.


Asunto(s)
Melanoma , Metionina , Animales , Metionina/metabolismo , Melanoma/genética , Proteoma , S-Adenosilmetionina/metabolismo , Racemetionina , Homocisteína
2.
Mol Immunol ; 163: 188-195, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37837954

RESUMEN

Immune checkpoint inhibitor therapy has drastically improved outcomes in treating cancer, particularly in melanoma. However, half of melanoma patients are resistant to treatment. One mechanism used by tumor cells to evade immune attack is to down-regulate major histocompatibility complex (MHC) class I molecules, which are required for cytotoxic CD8 T-cells to eliminate cancer cells. To increase immunotherapeutic efficacy, it is critical to identify how to restore MHC-I expression on cancer cells so that tumor antigens are presented. We found that resveratrol elevated MHC-I expression, so that tumor antigens are presented to cytotoxic CD8 T-cell killing. Through proteomic interrogation, we identified the STING pathway as a potential mechanism of action. Further studies indicated that resveratrol-mediated regulation of STING induced MHC-I expression potentially through both interferon-independent and dependent pathways. Our results have indicated the potential of STING to induce MHC-I expression independent of interferon signaling, broadening the potential of STING modulation as a tool to improve immune checkpoint blockade.


Asunto(s)
Presentación de Antígeno , Melanoma , Resveratrol , Humanos , Antígenos de Neoplasias , Antígenos de Histocompatibilidad Clase I , Antígenos HLA , Interferones , Complejo Mayor de Histocompatibilidad , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteómica , Resveratrol/farmacología
3.
Cancers (Basel) ; 15(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760436

RESUMEN

Dietary methionine restriction (MR), defined as a reduction of methionine intake by around 80%, has been shown to reproducibly decrease tumor growth and synergize with cancer therapies. In this study, we combined DMR with immune checkpoint inhibitors (ICIs) in a model of colon adenocarcinoma. In vitro, we observed that MR increased the expression of MHC-I and PD-L1 in both mouse and human colorectal cancer cells. We also saw an increase in the gene expression of STING, a known inducer of type I interferon signaling. Inhibition of the cGAS-STING pathway, pharmacologically or with siRNA, blunted the increase in MHC-I and PD-L1 surface and gene expression following MR. This indicated that the cGAS-STING pathway, and interferon in general, played a role in the immune response to MR. We then combined dietary MR with ICIs targeting CTLA-4 and PD-1 in an MC38 colorectal cancer tumor model developed in immunocompetent C57BL/6 mice. The combination treatment was five times more effective at reducing the tumor size than ICIs alone in male mice. We noted sex differences in the response to dietary MR, with males showing a greater response than females. Finally, we observed an increase in membrane staining for the PD-L1 protein in MC38 tumors from animals who were fed an MR diet. MHC-I was highly expressed in all tumors and showed no expression difference when comparing tumors from control and MR-treated mice. These results indicated that MR increased PD-L1 expression both in vitro and in vivo and improved the response to ICIs in mice.

4.
Immunol Cell Biol ; 101(7): 663-671, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37149747

RESUMEN

Modulation of T cell activity is an effective strategy for the treatment of autoimmune diseases, immune-related disorders and cancer. This highlights a critical need for the identification of proteins that regulate T cell function. The kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is emerging as a potent regulator of the immune system, spurring interest in its use as a therapeutic target. In murine models of immune-related diseases including asthma and rheumatoid arthritis, treatment with small-molecule DNA-PKcs inhibitors decreased the disease severity. Additionally, DNA-PKcs inhibitors reduced T cell-mediated graft rejection in a murine allogenic skin graft model. These in vivo studies suggest the use of DNA-PKcs inhibitors as immunotherapy for autoimmune and T cell-mediated disorders. In this study, we sought to characterize further the effects of DNA-PKcs inhibitors on T cells to better understand their clinical potential. We determined that inhibition of DNA-PKcs using inhibitor NU7441 and the inhibitors currently in clinical trials for cancer therapy, M3184 and AZD7648, abrogated the activation of murine and human CD4+ and CD8+ T cells as evidenced by the reduced expression of the activation markers CD69 and CD25. Furthermore, inhibition of DNA-PKcs impeded metabolic pathways and the proliferation of activated T cells. This reduced the ability of OTI-CD8+ T cells to kill cancer cells and the expression of IFNγ and cytotoxic genes. These results highlight a critical role for DNA-PKcs in T cells and validate future studies using DNA-PKcs inhibitors as immune modulation therapy for the treatment of immune-related diseases.


Asunto(s)
Antineoplásicos , Proteína Quinasa Activada por ADN , Humanos , Animales , Ratones , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD4-Positivos/metabolismo , ADN
5.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066240

RESUMEN

Dietary methionine restriction, defined as reduction of methionine intake by around 80%, reproducibly decreases tumor growth and synergizes with cancer therapies. Here, we combined dietary methionine restriction with immune checkpoint inhibitors in a model of colon adenocarcinoma. In vitro , we observed that methionine restriction increased the expression of MHC-I and PD-L1 in both mouse and human colorectal cancer cells. We also saw an increase in the gene expression of STING, a known inducer of type I interferon signaling. Inhibition of the cGAS-STING pathway, pharmacologically or with siRNA, blunted the increase in MHC-I and PD-L1 surface and gene expression following methionine restriction. PD-L1 expression was also This indicated that the cGAS-STING pathway in particular, and interferon in general, is playing a role in the immune response to methionine restriction. We then combined dietary methionine restriction with immune checkpoint inhibitors targeted against CTLA-4 and PD-1 in a MC38 colorectal cancer tumor model in C57BL/6 mice. The combination treatment was five times more effective at reducing tumor size than immune checkpoint inhibition alone in males. We noted sex differences in the response to dietary methionine restriction for the MC38 tumor model in C57BL/6 mice. Finally, we observed an increase in PD-L1 protein expression in MC38 tumors from animals who were fed a methionine-restricted diet. Furthermore, the distribution of CD8 staining changed from mostly peripheric in the controls, to intratumoral in the methionine-restricted tumors. MHC-I, which has a high basal expression in MC38 cells, was highly expressed in all tumors. These results indicate that methionine restriction improves the response to immune checkpoint inhibitors in mice, and that this improvement is associated with the cGAS-STING pathway and interferon signaling.

6.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066392

RESUMEN

Dietary methionine restriction is associated with a reduction in tumor growth in preclinical studies and an increase in lifespan in animal models. The mechanism by which methionine restriction inhibits tumor growth while sparing normal cells is incompletely understood. We do know that normal cells can utilize methionine or homocysteine interchangeably (methionine independence) while most cancer cells are strictly dependent on methionine availability. Here, we compared a typical methionine dependent and a rare methionine independent melanoma cell line. We show that replacing methionine, a methyl donor, with its precursor homocysteine generally induced hypomethylation in gene promoters. This decrease was similar in methionine dependent and methionine independent cells. There was only a low level of pathway enrichment, suggesting that the hypomethylation is generalized rather than gene specific. Whole proteome and transcriptome were also analyzed. This analysis revealed that contrarily to the effect on methylation, the replacement of methionine with homocysteine had a much greater effect on the transcriptome and proteome of methionine dependent cells than methionine independent cells. Interestingly, methionine adenosyltransferase 2A (MAT2A), responsible for the synthesis of s-adenosylmethionine from methionine, was equally strongly upregulated in both cell lines. This suggests that the absence of methionine is equally detected but triggers different outcomes in methionine dependent versus independent cells. Our analysis reveals the importance of cell cycle control, DNA damage repair, translation, nutrient sensing, oxidative stress and immune functions in the cellular response to methionine stress in melanoma.

7.
Environ Mol Mutagen ; 62(3): 216-226, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615565

RESUMEN

Restriction of the sulfur amino acids methionine and cysteine has recently been proposed as potential adjuvant therapy in cancer. While cysteine depletion has been associated with ferroptotic cell death, methionine depletion has not. We hypothesized that comparing the response of melanoma cell lines to depletion of the amino acids methionine and cysteine would give us insight into the critical role in cancer of these two closely related amino acids. We analyzed the response to three conditions: methionine depletion, methionine replacement with homocysteine, and cysteine depletion. In cancer cells, the transcription factor ATF4 was induced by all three tested conditions. The replacement of methionine with homocysteine produced a strong ferroptotic gene signature. We also detected an activation of the NRF2 antioxidant pathway by both methionine and cysteine depletion. Total glutathione levels were decreased by 42% in melanoma cells grown without methionine, and by 95% in cells grown without cysteine. Lipid peroxidation was increased in cells grown without cysteine, but not in cells grown without methionine. Despite the large degree of overlap in gene expression between methionine and cysteine depletion, methionine depletion and replacement of methionine with homocysteine was associated with apoptosis while cysteine depletion was associated with ferroptosis. Glutamine depletion produced comparable gene expression patterns and was associated with a 28% decrease in glutathione. Apoptosis was detected in these cells. In this experiment, a strong ATF4-driven ferroptotic gene signature was insufficient to induce ferroptosis without a concomitant profound decrease in glutathione levels.


Asunto(s)
Factor de Transcripción Activador 4/genética , Cisteína/genética , Metionina/genética , Factor 2 Relacionado con NF-E2/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Quimioterapia Adyuvante , Cisteína/antagonistas & inhibidores , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Homocisteína/genética , Humanos , Peroxidación de Lípido/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Metionina/antagonistas & inhibidores , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA