Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
In Vivo ; 38(4): 1758-1766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936916

RESUMEN

BACKGROUND/AIM: The leaves of Laurus nobilis have been used for culinary purposes for many years and have recently been shown to have beneficial effects on human health by altering microbiota composition. However, the effects of L. nobilis on the diversity of microbiomes in the oral cavity and gut remain unknown. Therefore, in this study, we examined the effects of an extract of L. nobilis on the diversity of microbiomes in the oral cavity and gut in mice. MATERIALS AND METHODS: C57BL/6J mice were randomly divided into two groups and fed a standard diet (SD) and a standard diet containing 5% LAURESH®, a laurel extract (SDL). After 10 weeks, oral swabs and fecal samples were collected. The bacterial DNA extracted from the oral swabs and feces was used for microbiota analysis using 16S rRNA sequencing. The sequencing data were analyzed using the Quantitative Insights into Microbial Ecology 2 in the DADA2 pipeline and 16S rRNA database. RESULTS: The α-diversity of the oral microbiome was significantly greater in the SDL group than in the SD group. The ß-diversity of the oral microbiome was also significantly different between the groups. Moreover, the taxonomic abundance analysis showed that five bacteria in the gut were significantly different among the groups. Furthermore, the SDL diet increased the abundance of beneficial gut bacteria, such as Akkermansia sp. CONCLUSION: Increased diversity of the oral microbiome and proportion of Akkermansia sp. in the gut microbiome induced by L. nobilis consumption may benefit oral and gut health.


Asunto(s)
Microbioma Gastrointestinal , Laurus , Boca , Extractos Vegetales , Hojas de la Planta , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Hojas de la Planta/química , Ratones , Extractos Vegetales/farmacología , Laurus/química , ARN Ribosómico 16S/genética , Boca/microbiología , Biodiversidad , Heces/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Ratones Endogámicos C57BL
2.
J Oral Pathol Med ; 53(2): 150-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291254

RESUMEN

BACKGROUND: Psychological stress is associated with changes in salivary flow and composition. However, studies to show the effect of psychological stress on the transcriptome of the salivary gland are limited. This study aims to perform a transcriptomic analysis of the submandibular gland under psychological stress using a chronic restraint stress model of rats. METHODS: Sprague-Dawley rats were divided into stress groups and control groups. Psychological stress was induced in the stress group rats by enclosing them in a plastic tube for 4 h daily over 6 weeks. RNA sequencing was performed on RNA extracted from the submandibular gland. The differentially expressed genes were identified, and the genes of interest were further validated using qRT-PCR, immunofluorescence, and western blot. RESULTS: A comparison between control and stress groups showed 45 differentially expressed genes. The top five altered genes in RNA sequencing data showed similar gene expression in qRT-PCR validation. The most downregulated gene in the stress group, FosB, was a gene of interest and was further validated for its protein-level expression using immunofluorescence and western blot. The genesets for gene ontology cellular component, molecular function, and KEGG showed that pathways related to ribosome biosynthesis and function were downregulated in the stress group compared to the control. CONCLUSION: Psychological stress showed transcriptomic alteration in the submandibular gland. The findings may be important in understanding stress-related oral diseases.


Asunto(s)
Glándulas Salivales , Glándula Submandibular , Ratas , Animales , Ratas Sprague-Dawley , Glándulas Salivales/metabolismo , Perfilación de la Expresión Génica , ARN/metabolismo
3.
J Oral Biosci ; 66(1): 26-34, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37949170

RESUMEN

OBJECTIVE: Periodontal disease is a risk factor for preterm delivery, and elevated female hormone levels during pregnancy promote hormone-dependent periodontopathogenic bacterial growth and gingivitis. Although the saliva of pregnant women contains female hormones at elevated levels, their effects on the gingiva are poorly understood. Therefore, in this study, we investigated the effects of estradiol and progesterone stimulation on gingival epithelial cells via ingenuity pathway analysis. METHODS: Human gingival epithelial progenitors were cultured in a CnT-Prime medium; 17ß-estradiol (E2) and progesterone (P4) were used as the reagents. Cells treated with dimethyl sulfoxide alone were used as the control group. Cells in the control and experimental groups were incubated for 12 h. RNA was extracted from the cultured cells, RNA-Seq was performed, and pathway analysis was conducted. RESULTS: Differentially expressed genes were detected for 699 (over 2-fold increase) and 348 (decrease) genes in group E2 and for 1448 (increase) and 924 (decrease) genes in group P4 compared with those in the control group (FDR <0.05, n = 4). The z-scores of the pathways suggest that E2 and P4 increased the activity of the wound healing signaling pathway. The activation of this pathway was higher in the E2 and P4 groups than that in the control group. CONCLUSIONS: The results of this study suggest that estradiol and progesterone may affect gingival homeostasis and wound healing.


Asunto(s)
Estradiol , Progesterona , Recién Nacido , Femenino , Embarazo , Humanos , Progesterona/farmacología , Progesterona/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Encía/metabolismo , Células Epiteliales/metabolismo , Células Cultivadas
4.
J Periodontal Res ; 58(3): 553-563, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36974375

RESUMEN

OBJECTIVE AND BACKGROUND: Heated tobacco products have recently become commercially available. These products, as well as combustible cigarettes, produce aerosols; the risk of various diseases associated with heated tobacco products may be the same or higher than that with combustible cigarettes. In this study, we examined the effect of Ploom TECH+ extract on gingival epithelial cells. METHODS: Tobacco leaves from Ploom TECH+ tobacco capsules and water were mixed and heated; the supernatant subsequently collected was the heated tobacco product (HTP; control: HTP not added). Normal human gingival epithelial progenitors were cultured alternately with or without HTP for a total of 1 month. Subsequently, RNA, DNA, and proteins were isolated from these samples and comprehensively analyzed using RNA sequencing (RNA-seq), reduced representation bisulfite sequencing (RRBS), and western blotting, respectively. RESULTS: RNA-seq revealed that 284 genes showed a twofold increase and 145 genes showed a twofold decrease in gene expression. A heat map showed genetic differences between the control and HTP groups. A principal component analysis plot showed a clear genetic distribution between the control and HTP. Gene Ontology (GO) analysis showed that genes related to seven GO terms, including cornification and keratinization, were induced by long-term HTP stimulation. By contrast, GO pathways with a significant decrease in component expression were not detected. RRBS revealed that CpG island methylation increased more than twofold in 158 genes and decreased to less than twofold in 171 genes. Methylation of these CpG islands was not correlated with changes in gene expression levels. HTP treatment increased S100A7 expression. CONCLUSION: Long-term HTP stimulation affected epithelial differentiation and keratinization of gingival epithelial cells. Thus, habitual use of Ploom TECH+ may be a risk factor for tobacco-related oral mucosal diseases.


Asunto(s)
Productos de Tabaco , Humanos , Factores de Riesgo , Calor , Células Epiteliales
5.
In Vivo ; 37(1): 163-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593043

RESUMEN

BACKGROUND/AIM: Alzheimer's disease is the most common type of neurodegenerative disorder in elderly individuals worldwide. Increasing evidence suggests that periodontal diseases are involved in the pathogenesis of Alzheimer's disease, and an association between periodontitis and amyloid-ß deposition in elderly individuals has been demonstrated. The aim of the present study was to examine the effects of systemic administration of Porphyromonas gingivalis-derived lipopolysaccharide (PG-LPS) on neprilysin expression in the hippocampus of adult and senescence-accelerated mice. MATERIALS AND METHODS: PG-LPS diluted in saline was intraperitoneally administered to male C57BL/6J and senescence-accelerated mouse prone 8 (SAMP8) mice at a dose of 5 mg/kg every 3 days for 3 months. Both C57BL/6J and SAMP8 mice administered saline without PG-LPS comprised the control group. The mRNA expression levels of neprilysin and interleukin (IL)-10 were evaluated using the quantitative reverse transcriptase-polymerase chain reaction. The protein levels of neprilysin were assessed using western blotting. Sections of the brain tissues were immunohistochemically stained. RESULTS: The serum IL-10 concentration significantly increased in both mouse strains after stimulation with PG-LPS. Neprilysin expression at both mRNA and protein levels was significantly lower in the SAMP8 PG-LPS group than those in the SAMP8 control group; however, they did not differ in PG-LPS-treated or non-treated C57BL/6J mice. Additionally, the immunofluorescence intensity of neprilysin in the CA3 region of the hippocampus in PG-LPS-treated SAMP8 mice was significantly lower than that in control SAMP8 mice. CONCLUSION: Porphyromonas gingivalis may reduce the expression of neprilysin in elderly individuals and thus increase amyloid-ß deposition.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Lipopolisacáridos/farmacología , Porphyromonas gingivalis/metabolismo , Neprilisina/genética , Neprilisina/metabolismo , Ratones Endogámicos C57BL , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , ARN Mensajero/metabolismo
6.
Jpn Dent Sci Rev ; 58: 365-375, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36425317

RESUMEN

Psychological stress in a chronic course is implicated in various diseases, such as coronary artery disease, diabetes, ulcerative colitis, and psychosomatic pain disorders. Commensal microbiota in the host tissues interact with each other and maintain overall health. Oral and gut microbiomes are considered as the most ecologically rich and taxonomically diverse microbiota communities in humans. The effects of psychological stress on the gut microbiome have been well documented, and the interaction is commonly referred as the microbiota-gut-brain axis. Like the gut microbiome, the oral microbiome contributes to maintaining both local and systemic health. Although the effects of psychological stress on the oral microbiome have been studied, comprehensive knowledge about the oral-brain axis is lacking. The oral cavity and gut can communicate with each other through the microbiota. Three-way interactions within the oral-gut-brain microbiota might exist in patients with psychological stress and disorders. The effect of psychological stress on the gut and oral microbiomes, and the potential interactions within the oral-gut-brain axis are discussed in this review.

7.
J Periodontal Res ; 57(6): 1256-1266, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36251393

RESUMEN

BACKGROUND AND OBJECTIVE: The translocation of oral bacteria, including Porphyromonas gingivalis, to the gut has been shown to alter gut microbiome. However, the effect of P. gingivalis on gut microbiome in relation to aging has not been demonstrated. We hypothesize that P. gingivalis has more detrimental effect on gut environment with increased age. The objective of this study is to investigate the effect of P. gingivalis on gut environment using aged mice. MATERIALS AND METHODS: C57BL/6J mice aged 4 weeks (young) or 76 weeks (old) were divided into four groups: control-young, control-old, P. gingivalis-administered young, and P. gingivalis-administered old. P. gingivalis was orally administered thrice weekly for 5 weeks. At 30 days after the last P. gingivalis administration, 16S rRNA sequencing was performed to study the gut microbiome. The mRNA and protein expression of intestinal junctional barrier molecules and the levels of the inflammatory cytokines IL-1ß and TNF-α in the serum were evaluated. RESULTS: Significant differences in the gut microbiomes between the groups, in terms of taxonomic abundance, bacterial diversity, and predicted metagenome function, were observed. A significant reduction in the alpha diversity and in the abundance of beneficial bacteria, such as Akkermansia and Clostridiaceae, in the P. gingivalis-administered old mice was observed. The mRNA and protein levels of Claudin-1 and Claudin-2 in the intestine were significantly elevated, while E-cadherin was significantly downregulated in the P. gingivalis-administered old mice, as were the serum levels of IL-1ß and TNF-α. CONCLUSION: The effect of P. gingivalis on the gut environment is more pronounced in old mice than in young mice.


Asunto(s)
Microbioma Gastrointestinal , Porphyromonas gingivalis , Ratones , Animales , ARN Ribosómico 16S , Factor de Necrosis Tumoral alfa , Ratones Endogámicos C57BL , Envejecimiento , ARN Mensajero
8.
In Vivo ; 36(5): 2134-2142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099099

RESUMEN

BACKGROUND/AIM: Amitriptyline is a major tricyclic antidepressant that is also used to relieve chronic orofacial pain. Recently, alterations in gut flora due to various antidepressants have been demonstrated. However, it remains unknown how antidepressants affect the oral environment, including microbiota and innate immunity. The aim of this study was to investigate the effects of amitriptyline on oral microflora and antimicrobial peptides. MATERIALS AND METHODS: Sprague-Dawley rats were intraperitoneally injected with amitriptyline for 2 weeks. The DNA extracted from the oral swabs were used to perform 16SrRNA sequencing to evaluate the oral microbiome. Quantitative RT-PCR was performed to evaluate the mRNA levels of antimicrobial peptides in the buccal tissues. RESULTS: No significant differences in salivary flow rates were observed between the amitriptyline and control groups. Taxonomic analysis showed significant alterations in bacteria such as Corynebacterium, Rothia, and Porphyromonas due to amitriptyline administration. The beta diversity showed significant differences between the amitriptyline and control groups. Additionally, the predicted metagenome functions were significantly different between the two groups. The mRNA expression levels of antimicrobial peptides in the amitriptyline group were significantly higher as compared to controls. CONCLUSION: Systemic administration of amitriptyline may affect the oral environment, including oral microbes and innate immunity in the oral mucosa.


Asunto(s)
Amitriptilina , Microbioma Gastrointestinal , Amitriptilina/farmacología , Animales , Antidepresivos , Ratas , Ratas Sprague-Dawley
9.
J Endod ; 48(11): 1387-1394, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067833

RESUMEN

INTRODUCTION: Apart from the epithelial cell rests of Malassez (ERMs), dental pulp (DP) contains the same types of mesenchymal cells as the periodontal ligament (PDL). ERMs may affect the characteristics of the mesenchymal cells in the PDL. The aim of this study was to examine whether DP cells cultured with ERMs and human umbilical vein endothelial cells (HUVECs) could transform into PDL-like cells. METHODS: Progenitor-dedifferentiated into stem-like cells (Pro-DSLCs) were produced by the induction of ERMs with 5-Azacytidine and valproic acid. DP cells were cultured in mesenchymal stem cell medium for 1 week under the following conditions: DP cells alone (controls); PDL cells alone; coculture of DP cells and ERMs (DP + ERM) or Pro-DSLCs (DP + Pro-DSLC); and coculture of DP cells, HUVECs, and ERMs (DP + ERM + HUVEC) or Pro-DSLCs (DP + Pro-DSLC + HUVEC). Quantitative real-time reverse transcription polymerase chain reaction, quantitative methylation-specific polymerase chain reaction, and flow cytometry were performed. RESULTS: The expression levels of PDL-related markers Msx1, Msx2, Ncam1, Postn, and S100a4 and mesenchymal stem cell-positive markers Cd29, Cd90, and Cd105 were significantly higher in the PDL cells and DP + Pro-DSLC + HUVEC cultures than in the controls (P < .05). The DNA methylation levels of Msx1 and Cd29 in the PDL cells and the DP + Pro-DSLC + HUVEC culture were significantly lower than in the controls (P < .01). We found a significant increase in the number of cells stained with MSX1 (P < .05) and CD29 (P < .01) in the DP + Pro-DSLC + HUVEC culture than in the controls. CONCLUSIONS: Coculture of DP cells with Pro-DSLCs and HUVECs induced their transformation into PDL-like cells. This method may prove to be useful for periodontal regeneration via tissue engineering.


Asunto(s)
Células Endoteliales , Ligamento Periodontal , Humanos , Técnicas de Cocultivo , Pulpa Dental , Venas Umbilicales , Descanso , Ácido Valproico/metabolismo , Células Epiteliales , Azacitidina , Células Cultivadas , Diferenciación Celular
10.
PLoS One ; 17(5): e0268155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613108

RESUMEN

Psychological stress is associated with various oral diseases such as aphthous stomatitis, oral lichen planus, taste disturbances and glossodynia. However, the underlying mechanism is still unknown. The aim of this study was to determine the effect of psychological stress on salivary proteins and the oral microbiota in a rat model of chronic restraint stress. Six-week-old Sprague Dawley rats were subjected to restraint stress for four hours daily for 1 month. The behavior, weights of the adrenal glands, and serum corticosterone levels were evaluated as stress markers. Proteomic analysis of the saliva was performed using two-dimensional gel electrophoresis followed by mass spectrometry and Western blotting. Analysis of the oral microbiota was performed via 16S rRNA next-generation sequencing. The low mean body weights, lower number of entries and time spent in the open arm of elevated plus maze, high adrenal gland/body weight ratios, and high serum corticosterone levels confirmed the high levels of stress in the stress group of rats compared to the controls. Thirty-three protein spots were found to be significantly altered between the two groups. After silver staining, seven visible spots were subjected for mass spectrometry, and the expression levels of the two most significantly altered proteins, BPI fold containing family A member 2 and von Ebner's gland protein, were confirmed by Western blotting. 16S rRNA sequencing analysis revealed a significant reduction in alpha diversity in the stress group compared to the controls. The abundances of oral bacteria, such as Facklamia and Corynebacterium, were significantly altered between the two groups. Additionally, analysis with PICRUSt2 software predicted 37 different functional pathways to be altered between the groups. In conclusion, the present study identified altered salivary proteins and oral microbiota due to psychological stress. These findings might aid in understanding the pathogenesis of stress-related oral diseases.


Asunto(s)
Corticosterona , Microbiota , Animales , Boca , Proteómica , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley , Proteínas y Péptidos Salivales , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA