Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(3): 691-704, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36741525

RESUMEN

Redox photosensitisers (PSs) play essential roles in various photocatalytic reactions. Herein, we synthesised new redox PSs of 1 : 1 supramolecules that comprise a ring-shaped Re(i) tetranuclear complex with 4+ charges and a Keggin-type heteropolyoxometalate with 4- charges. These PSs photochemically accumulate multi-electrons in one molecule (three or four electrons) in the presence of an electron donor and can supply electrons with different reduction potentials. PSs were successfully applied in the photocatalytic reduction of CO2 using catalysts (Ru(ii) and Re(i) complexes) and triethanolamine as a reductant. In photocatalytic reactions, these supramolecular PSs supply a different number of electrons to the catalyst depending on the redox potential of the intermediate, which is made from the one-electron-reduced species of the catalyst and CO2. Based on these data, information on the reduction potentials of the intermediates was obtained.

2.
Chem Sci ; 12(28): 9645-9657, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34349936

RESUMEN

In this study, charged π-electronic species are observed to develop stacking structures based on electrostatic and dispersion forces. i π- i π Interaction, defined herein, functions for the stacking structures consisting of charged π-electronic species and is in contrast to conventional π-π interaction, which mainly exhibits dispersion force, for electronically neutral π-electronic species. Establishing the concept of i π- i π interaction requires the evaluation of interionic interactions for π-electronic ion pairs. Free base (metal-free) and diamagnetic metal complexes of 5-hydroxy-10,15,20-tris(pentafluorophenyl)porphyrin were synthesized, producing π-electronic anions upon the deprotonation of the hydroxy unit. Coexisting cations in the ion pairs with porphyrin anions were introduced as the counter species of the hydroxy anion as a base for commercially available cations and as ion-exchanged species, via Na+ in the intermediate ion pairs, for synthesized π-electronic cations. Solid-state ion-pairing assemblies were constructed for the porphyrin anions in combination with aliphatic tetrabutylammonium (TBA+) and π-electronic 4,8,12-tripropyl-4,8,12-triazatriangulenium (TATA+) cations. The ordered arrangements of charged species, with the contributions of the charge-by-charge and charge-segregated modes, were observed according to the constituent charged building units. The energy decomposition analysis (EDA) of single-crystal packing structures revealed that electrostatic and dispersion forces are important factors in stabilizing the stacking of π-electronic ions. Furthermore, crystal-state absorption spectra of the ion pairs were correlated with the assembling modes. Transient absorption spectroscopy of the single crystals revealed the occurrence of photoinduced electron transfer from the π-electronic anion in the charge-segregated mode.

3.
Inorg Chem ; 60(11): 7773-7784, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33971089

RESUMEN

We have explored the structural factors on the photophysical properties in two rhenium(I) diimine complexes in acetonitrile solution, cis,trans-[Re(dmb)(CO)2(PPh2Et)2]+ (Et(2,2)) and cis,trans-[Re(dmb)(CO)2(PPh3)2]+ ((3,3)) (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ph = phenyl, Et = ethyl) using the combination method of time-resolved infrared spectroscopy, time-resolved extended X-ray absorption fine structure, and quantum chemical calculations. The difference between these complexes is the number of phenyl groups in the phosphine ligand, and this only indirectly affects the central Re(I). Despite this minor difference, the complexes exhibit large differences in emission wavelength and excited-state lifetime. Upon photoexcitation, the bond length of Re-P and angle of P-Re-P are significantly changed in both complexes, while the phenyl groups are largely rotated by ∼20° only in (3,3). In contrast, there is little change in charge distribution on the phenyl groups when Re to dmb charge transfer occurs upon photoexcitation. We concluded that the instability from steric effects of phenyl groups and diimine leads to a smaller Stokes shift of the lowest excited triplet state (T1) in (3,3). The large structural change between the ground and excited states causes the longer lifetime of T1 in (3,3).

4.
J Phys Chem A ; 124(28): 5756-5769, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32559101

RESUMEN

The effects of substituents and solvents on the NH tautomerism of N-confused porphyrin (2) were investigated. The structures, electronic states, and aromaticity of NH tautomers (2-2H and 2-3H) were studied by absorption and nuclear magnetic resonance (1H, 13C, and 15N) spectroscopies, single-crystal X-ray diffraction analysis, and theoretical calculations. The relative stability of the tautomers is highly affected by solvents, with the 3H-type tautomer being more stable in nonpolar solvents, while the 2H-type tautomer being highly stabilized in polar solvents with high donor numbers such as N,N-dimethylformamide (DMF), pyridine, and acetone. Electron-withdrawing groups on the meso-aryl substituents as well as the methyl group at the ortho position also stabilize the 2H-type tautomer. Kinetically, the tautomerism rate is significantly influenced by solvent and concentration, and a particularly large activation entropy (ΔS⧧) is obtained in pyridine. The first-order deuterium isotope effect on the reaction rates of NH tautomerism (kH/kD) is determined to be 2.4 at 298 K. On the basis of kinetic data, the mechanism of isomerization is identified as an intramolecular process, including the rotation of the confused pyrrole in pyridine/chloroform and DMF/chloroform mixed solvent systems, and as a pyridine-mediated process in pyridine alone.

5.
Nanotechnology ; 30(34): 34LT02, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31071703

RESUMEN

In many applications such as CO2 reduction and water splitting, high-energy photons in the ultraviolet region are required to complete the chemical reactions. However, to realize sustainable development, the photon energies utilized must be lower than the absorption edge of the materials including the metal complex for CO2 reduction, the electrodes for water splitting, because of the huge amount of lower energy than the visible region received from the sun. In the previous works, we had demonstrated that optical near-fields (ONFs) could realize chemical reactions, by utilizing photon energies much lower than the absorption edge because of the spatial non-uniformity of the electric field. In this paper, we demonstrate that an ONF can realize the red shift of the absorption spectra of the metal-complex material for photocatalytic reduction. By attaching the metal complex to ZnO nano-crystalline aggregates with nano-scale protrusions, the absorption spectra by using diffuse reflection of the metal complex can be shifted to a longer wavelength by 10.6 nm. The results of computational studies based on a first-principles computational program including the ONF effect provide proof of the increase in the absorption of the metal complex at lower photon energies. Since the near-field assisted field increase improves the carrier excitation in the metal-complex materials, this effect may be universal and it could applicable to CO2 reduction using the other metal-complex materials, as well as to the other photo excitation process including water splitting.

6.
Acc Chem Res ; 50(11): 2673-2683, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-28994292

RESUMEN

The photophysical and photochemical properties of transition metal complexes have attracted considerable attention because of their recent applications as photocatalysts in artificial photosynthesis and organic synthesis, as light emitters in electroluminescent (EL) devices, and as dyes in solar cells. The general control methods cannot be always used to obtain transition metal complexes with photochemical properties that are suitable for the above-mentioned applications. In the fields of solar energy conversion, strong metal-to-ligand charge-transfer (MLCT) absorption of redox photosensitizers and/or photocatalysts in the visible region with long wavelength is essential. However, the usual methods, i.e., introduction of electron-withdrawing groups into the electron-accepting ligand and/or weak-field ligands into the central metal, have several drawbacks, including shorter excited-state lifetime, lower emission efficiency, and lower oxidation and reduction power. Herein we describe a new method to control the photophysical, photochemical, and electrochemical properties of Re(I) diimine carbonyl complexes that have been widely used in various fields such as photocatalysts for CO2 reduction and emitters in EL devices and sensors. This method involves the introduction of interligand interactions (π-π and CH-π interactions) into the Re(I) complexes; the aromatic diimine ligand coordinating to the Re center approaches the aryl groups on the phosphine ligand or ligands at the cis position, which "compulsorily" induces a weak interaction between these aromatic groups. As a result of this interligand interaction, the Re complexes with the aromatic diimine ligand and the arylphosphine ligand(s) exhibit red-shifted 1MLCT absorption but afford blue-shifted emission from the triplet metal-to-ligand charge-transfer (3MLCT) excited state. This increases the oxidation power and lifetime of the 3MLCT excited state. These unique property changes are favorable, particularly for redox photosensitizers. The interligand interaction is strongly expressed by the ring-shaped multinuclear Re(I) complexes (Re-rings). In the case of Re-rings with high steric hindrance due to a small inner cavity, the lifetime of the 3MLCT excited state is up to 8 µs and the emission quantum yield is up to 70%. These properties cannot be obtained by the corresponding mononuclear Re(I) complexes, which generally exhibit shorter lifetimes (<1 µs) and lower emission quantum yields (<10%). Some of the Re-rings could be successfully applied as efficient photosensitizers in photocatalytic systems for CO2 reduction; the highest quantum yields for CO2 reduction were achieved by using photocatalytic systems composed of Re-rings as the photosensitizers and Re(I) (82%), Ru(II) (58%), and Mn(I) (48%) complexes as catalysts. This interligand interaction potentially provides unique and useful methods for controlling the photophysical, photochemical, and electrochemical functions of various metal complexes, paving the way to create new functions for metal complexes.

7.
J Am Chem Soc ; 138(42): 13818-13821, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27704819

RESUMEN

A novel molecular photocatalytic system with not only high reduction ability of CO2 but also high capture ability of CO2 has been developed using a Ru(II)-Re(I) dinuclear complex as a photocatalyst. By using this photocatalytic system, CO2 of 10% concentration could be selectively converted to CO with almost same photocatalysis to that under a pure CO2 atmosphere (TONCO > 1000, ΦCO > 0.4). Even 0.5% concentration of CO2 was reduced with 60% initial efficiency of CO formation by using the same system compared to that using pure CO2 (TONCO > 200). The Re(I) catalyst unit in the photocatalyst can efficiently capture CO2, which proceeds CO2 insertion to the Re-O bond, and then reduce the captured CO2 by using an electron supplied from the photochemically reduced Ru photosensitizer unit.

8.
Org Lett ; 18(12): 3006-9, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27268126

RESUMEN

Chirality-induced aromatic π-electronic macrocycles, porphyrin and corroles, were synthesized through doubly inner N-methylation through multistep and one-pot reactions, respectively. The exact structures of doubly N-methylated porphyrin and corroles were revealed by single-crystal synchrotron X-ray analysis, exhibiting two N-methyl groups located on neighboring pyrrole rings in up/down conformations. These doubly inner N-substitutions of the π-electronic macrocycles induced distorted geometries, resulting in chiroptical properties after optical resolutions.

9.
Dalton Trans ; 45(37): 14668-77, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27180997

RESUMEN

Photocatalytic systems for CO2 reduction using a Ru(ii) tris-diimine complex (Ru) as a photosensitiser and dinuclear Re(i) diimine tricarbonyl complexes (Re(n)Re), in which diimine ligands are connected by alkyl chains of various lengths (-CnH2n-: n = 2, 3, 4, 6, 14), as catalysts were investigated. The photocatalytic systems using Re(n)Re exhibited improved durability compared with that using the corresponding mononuclear Re(i) complex (Re); moreover, among the Re(n)Re, shorter alkyl chains in the bridging ligands induced greater durability. We found that the durability of the photocatalytic system depended on the decomposition speed of Ru, which could be suppressed using Re(n)Re with shorter alkyl chains.

10.
Dalton Trans ; 44(25): 11626-35, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26040261

RESUMEN

Various photofunctional metal complexes with functional groups, i.e. bromo and vinyl groups, were integrated into hetero-multinuclear complexes using the Mizoroki-Heck reaction. The obtained trinuclear complexes absorb a wide range of visible light and have a long excited state lifetime and the photocatalytic ability to obtain CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA