Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(1): e0174123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38078768

RESUMEN

Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a ß-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.


Asunto(s)
Gases de Efecto Invernadero , Óxido Nitroso , Óxido Nitroso/metabolismo , Desnitrificación , Nitratos/metabolismo , Gases de Efecto Invernadero/metabolismo , Dióxido de Nitrógeno/metabolismo , Dióxido de Nitrógeno/farmacología , Bacterias/genética , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo
2.
Transplantation ; 105(3): 637-647, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32301906

RESUMEN

BACKGROUND: HLA molecular mismatch (MM) is a risk factor for de novo donor-specific antibody (dnDSA) development in solid organ transplantation. HLA expression differences have also been associated with adverse outcomes in hematopoietic cell transplantation. We sought to study both MM and expression in assessing dnDSA risk. METHODS: One hundred three HLA-DP-mismatched solid organ transplantation pairs were retrospectively analyzed. MM was computed using amino acids (aa), eplets, and, supplementarily, Grantham/Epstein scores. DPB1 alleles were classified as rs9277534-A (low-expression) or rs9277534-G (high-expression) linked. To determine the associations between risk factors and dnDSA, logistic regression, linkage disequilibrium (LD), and population-based analyses were performed. RESULTS: A high-risk AA:GX (recipient:donor) expression combination (X = A or G) demonstrated strong association with HLA-DP dnDSA (P = 0.001). MM was also associated with HLA-DP dnDSA when evaluated by itself (eplet P = 0.007, aa P = 0.003, Grantham P = 0.005, Epstein P = 0.004). When attempting to determine the relative individual effects of the risk factors in multivariable analysis, only AA:GX expression status retained a strong association (relative risk = 18.6, P = 0.007 with eplet; relative risk = 15.8, P = 0.02 with aa), while MM was no longer significant (eplet P = 0.56, aa P = 0.51). Importantly, these risk factors are correlated, due to LD between the expression-tagging single-nucleotide polymorphism and polymorphisms along HLA-DPB1. CONCLUSIONS: The MM and expression risk factors each appear to be strong predictors of HLA-DP dnDSA and to possess clinical utility; however, these two risk factors are closely correlated. These metrics may represent distinct ways of characterizing a common overlapping dnDSA risk profile, but they are not independent. Further, we demonstrate the importance and detailed implications of LD effects in dnDSA risk assessment and possibly transplantation overall.


Asunto(s)
Rechazo de Injerto/inmunología , Cadenas beta de HLA-DP/biosíntesis , Isoanticuerpos/inmunología , Trasplante de Riñón/efectos adversos , Donantes de Tejidos , Estudios de Seguimiento , Cadenas beta de HLA-DP/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Prueba de Histocompatibilidad , Humanos , Desequilibrio de Ligamiento , Estudios Retrospectivos
3.
Am J Transplant ; 19(7): 1955-1963, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30623581

RESUMEN

HLA typing in solid organ transplantation (SOT) is necessary for determining HLA-matching status between donor-recipient pairs and assessing patients' anti-HLA antibody profiles. Histocompatibility has traditionally been evaluated based on serologically defined HLA antigens. The evolution of HLA typing and antibody identification technologies, however, has revealed many limitations with using serologic equivalents for assessing compatibility in SOT. The significant improvements to HLA typing introduced by next-generation sequencing (NGS) require an assessment of the impact of this technology on SOT. We have assessed the role of high-resolution 2-field HLA typing (HR-2F) in SOT by retrospectively evaluating NGS-typed pre- and post-SOT cases. HR-2F typing was highly instructive or necessary in 41% (156/385) of the cases. Several pre- and posttransplant scenarios were identified as being better served by HR-2F typing. Five different categories are presented with specific case examples. The experience of another center (Temple University Hospital) is also included, whereby 21% of the cases required HR-2F typing by Sanger sequencing, as supported by other legacy methods, to properly address posttransplant anti-HLA antibody issues.


Asunto(s)
Antígenos HLA/clasificación , Prueba de Histocompatibilidad/métodos , Histocompatibilidad , Trasplante de Órganos/métodos , Selección de Paciente , Donantes de Tejidos/estadística & datos numéricos , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Antígenos HLA/genética , Antígenos HLA/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunogenética , Lactante , Masculino , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Análisis de Secuencia de ADN
4.
Appl Environ Microbiol ; 79(18): 5745-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23851092

RESUMEN

We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus deltoides. There is a large bank of bacterial isolates from P. deltoides, and there are 44 draft genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand the roles of bacterial communication and plant-bacterial signaling in P. deltoides, we focused on the prevalence of acyl-homoserine lactone (AHL) quorum-sensing-signal production and reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and we queried the available genome sequences of microbiome isolates for homologs of AHL synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. Positive isolates included members of the Alpha-, Beta-, and Gammaproteobacteria. Members of the luxI family of AHL synthases were identified in 18 of 39 proteobacterial genomes, including genomes of some isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, which includes AHL-responsive factors, were more abundant than luxI homologs. There were 72 in the 39 proteobacterial genomes. Some of the luxR homologs appear to be members of a subfamily of LuxRs that respond to as-yet-unknown plant signals rather than bacterial AHLs. Apparently, there is a substantial capacity for AHL cell-to-cell communication in proteobacteria of the P. deltoides microbiota, and there are also Proteobacteria with LuxR homologs of the type hypothesized to respond to plant signals or cues.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Microbiota , Populus/microbiología , Percepción de Quorum , Proteínas Represoras/genética , Transactivadores/genética , Factores de Transcripción/genética , Acil-Butirolactonas/análisis , Técnicas Biosensibles , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA