Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 7932, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404966

RESUMEN

Cassini's Grand Finale orbits provided for the first time in-situ measurements of Saturn's topside ionosphere. We present the Pedersen and Hall conductivities of the top near-equatorial dayside ionosphere, derived from the in-situ measurements by the Cassini Radio and Wave Plasma Science Langmuir Probe, the Ion and Neutral Mass Spectrometer and the fluxgate magnetometer. The Pedersen and Hall conductivities are constrained to at least 10-5-10-4 S/m at (or close to) the ionospheric peak, a factor 10-100 higher than estimated previously. We show that this is due to the presence of dusty plasma in the near-equatorial ionosphere. We also show the conductive ionospheric region to be extensive, with thickness of 300-800 km. Furthermore, our results suggest a temporal variation (decrease) of the plasma densities, mean ion masses and consequently the conductivities from orbit 288 to 292.

2.
Science ; 362(6410)2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287633

RESUMEN

The sizes of Saturn's ring particles range from meters (boulders) to nanometers (dust). Determination of the rings' ages depends on loss processes, including the transport of dust into Saturn's atmosphere. During the Grand Finale orbits of the Cassini spacecraft, its instruments measured tiny dust grains that compose the innermost D-ring of Saturn. The nanometer-sized dust experiences collisions with exospheric (upper atmosphere) hydrogen and molecular hydrogen, which forces it to fall from the ring into the ionosphere and lower atmosphere. We used the Magnetospheric Imaging Instrument to detect and characterize this dust transport and also found that diffusion dominates above and near the altitude of peak ionospheric density. This mechanism results in a mass deposition into the equatorial atmosphere of ~5 kilograms per second, constraining the age of the D-ring.

3.
Science ; 359(6371): 66-68, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29229651

RESUMEN

The ionized upper layer of Saturn's atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet's rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn's A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry.

4.
Science ; 350(6261): aad0398, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542578

RESUMEN

Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

5.
Science ; 308(5724): 986-9, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15894529

RESUMEN

The Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe (LP) sensor observed the cold plasma environment around Titan during the first two flybys. The data show that conditions in Saturn's magnetosphere affect the structure and dynamics deep in the ionosphere of Titan. The maximum measured ionospheric electron number density reached 3800 per cubic centimeter near closest approach, and a complex chemistry was indicated. The electron temperature profiles are consistent with electron heat conduction from the hotter Titan wake. The ionospheric escape flux was estimated to be 10(25) ions per second.


Asunto(s)
Saturno , Atmósfera , Medio Ambiente Extraterrestre , Iones , Magnetismo , Nave Espacial , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...