Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gene ; 878: 147572, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336275

RESUMEN

Chromatin-mediated transcriptional regulation is modulated by post-translational modifications of the core histones, particularly the H3 and H4 unstructured amino termini, or "tails". In budding yeast, the H3 and H4 tails can be deacetylated by Rpd3 to repress specific target genes, and hypoacetylated histones can facilitate recruitment of the Tup1-Ssn6 complex to effect gene repression. However, the extent to which these mechanisms are used to effect repression by the histone tails, and whether other factors similarly collaborate with the tails to facilitate gene repression, has not been determined. Here, a chromatin modifier compendium of 170 gene expression profiles from yeast strains mutated for chromatin-related genes was used to query the effect of the corresponding mutations on gene cohorts repressed by the histone H3 and H4 tails and/or by Rpd3. The resulting analysis reveals that repression of nearly all of the genes repressed by the histone tails requires Rpd3 and/or the Tup1-Ssn6 complex. Repression by Rpd3 occurs via the Rpd3-L complex, and TFIID-dominated genes are underrepresented among genes repressed by mutations or deletions of the H3 or H4 tails, in accord with previous work. In addition, Bur6, the yeast homolog of human NC2α, is required for repression at ∼50 % of genes repressed by the H3 or H4 tail. These results illuminate genome-wide repression mechanisms utilized by the histone tails in yeast and raise new questions regarding the role of Bur6 in histone tail-mediated repression and whether parallels exist in metazoan cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Animales , Humanos , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Represoras/genética , Saccharomycetales/genética , Cromatina/genética , Cromatina/metabolismo , Transcripción Genética
2.
Front Mol Biosci ; 9: 896215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847981

RESUMEN

The Ty1 retrotransposon family is maintained in a functional but dormant state by its host, Saccharomyces cerevisiae. Several hundred RHF and RTT genes encoding co-factors and restrictors of Ty1 retromobility, respectively, have been identified. Well-characterized examples include MED3 and MED15, encoding subunits of the Mediator transcriptional co-activator complex; control of retromobility by Med3 and Med15 requires the Ty1 promoter in the U3 region of the long terminal repeat. To characterize the U3-dependence of other Ty1 regulators, we screened a library of 188 known rhf and rtt mutants for altered retromobility of Ty1his3AI expressed from the strong, TATA-less TEF1 promoter or the weak, TATA-containing U3 promoter. Two classes of genes, each including both RHFs and RTTs, were identified. The first class comprising 82 genes that regulated Ty1his3AI retromobility independently of U3 is enriched for RHF genes that restrict the G1 phase of the cell cycle and those involved in transcriptional elongation and mRNA catabolism. The second class of 51 genes regulated retromobility of Ty1his3AI driven only from the U3 promoter. Nineteen U3-dependent regulators (U3DRs) also controlled retromobility of Ty1his3AI driven by the weak, TATA-less PSP2 promoter, suggesting reliance on the low activity of U3. Thirty-one U3DRs failed to modulate P PSP2 -Ty1his3AI retromobility, suggesting dependence on the architecture of U3. To further investigate the U3-dependency of Ty1 regulators, we developed a novel fluorescence-based assay to monitor expression of p22-Gag, a restriction factor expressed from the internal Ty1i promoter. Many U3DRs had minimal effects on levels of Ty1 RNA, Ty1i RNA or p22-Gag. These findings uncover a role for the Ty1 promoter in integrating signals from diverse host factors to modulate Ty1 RNA biogenesis or fate.

3.
Transcription ; 13(1-3): 39-52, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35708525

RESUMEN

The Mediator complex was discovered in the early 1990s as a biochemically fractionated factor from yeast extracts that was necessary for activator-stimulated transcriptional activation to be observed in in vitro transcription assays. The structure of this large, multi-protein complex is now understood in great detail, and novel genetic approaches have provided rich insights into its dynamics during transcriptional activation and the mechanism by which it facilitates activated transcription. Here I review recent findings and unanswered questions regarding Mediator dynamics, the roles of individual subunits, and differences between its function in yeast and metazoan cells.


Asunto(s)
Complejo Mediador , Proteínas de Saccharomyces cerevisiae , Animales , Núcleo Celular/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Activación Transcripcional
4.
Life Sci Alliance ; 5(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470239

RESUMEN

Protein O-GlcNAcylation is a dynamic, nutrient-sensitive mono-glycosylation deposited on numerous nucleo-cytoplasmic and mitochondrial proteins, including transcription factors, epigenetic regulators, and histones. However, the role of protein O-GlcNAcylation on epigenome regulation in response to nutrient perturbations during development is not well understood. Herein we recapitulated early human embryonic neurogenesis in cell culture and found that pharmacological up-regulation of O-GlcNAc levels during human embryonic stem cells' neuronal differentiation leads to up-regulation of key neurogenic transcription factor genes. This transcriptional de-repression is associated with reduced H3K27me3 and increased H3K4me3 levels on the promoters of these genes, perturbing promoter bivalency possibly through increased EZH2-Thr311 phosphorylation. Elevated O-GlcNAc levels also lead to increased Pol II-Ser5 phosphorylation and affect H2BS112O-GlcNAc and H2BK120Ub1 on promoters. Using an in vivo rat model of maternal hyperglycemia, we show similarly elevated O-GlcNAc levels and epigenetic dysregulations in the developing embryo brains because of hyperglycemia, whereas pharmacological inhibition of O-GlcNAc transferase (OGT) restored these molecular changes. Together, our results demonstrate O-GlcNAc mediated sensitivity of chromatin to nutrient status, and indicate how metabolic perturbations could affect gene expression during neurodevelopment.


Asunto(s)
Acetilglucosamina , Hiperglucemia , Acetilglucosamina/metabolismo , Animales , Epigénesis Genética , Neurogénesis/genética , Nutrientes , Ratas , Transcriptoma
5.
Genome Res ; 32(1): 111-123, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785526

RESUMEN

The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates preinitiation complex (PIC) assembly, only transiently before Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy shows similar dependence on Mediator under normal and heat shock conditions. However, although Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Unexpectedly, Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1Δ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Regulación Fúngica de la Expresión Génica , Respuesta al Choque Térmico/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Transcripción Genética
6.
Nucleic Acids Res ; 48(8): 4244-4255, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32182349

RESUMEN

Transcription of eukaryotic mRNA-encoding genes by RNA polymerase II (Pol II) begins with assembly of the pre-initiation complex (PIC), comprising Pol II and the general transcription factors. Although the pathway of PIC assembly is well established, the mechanism of assembly and the dynamics of PIC components are not fully understood. For example, only recently has it been shown that in yeast, the Mediator complex normally occupies promoters only transiently, but shows increased association when Pol II promoter escape is inhibited. Here we show that two subunits of TFIID, Taf1 and Taf4, similarly show increased occupancy as measured by ChIP upon depletion or inactivation of Kin28. In contrast, TBP occupancy is unaffected by depletion of Kin28, thus revealing an uncoupling of Taf and TBP occupancy during the transcription cycle. Increased Taf1 occupancy upon Kin28 depletion is suppressed by depletion of TBP, while depletion of TBP in the presence of Kin28 has little effect on Taf1 occupancy. The increase in Taf occupancy upon depletion of Kin28 is more pronounced at TFIID-dominated promoters compared to SAGA-dominated promoters. Our results support the suggestion, based on recent structural studies, that TFIID may not remain bound to gene promoters through the transcription initiation cycle.


Asunto(s)
Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Mutación , Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo
7.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30540252

RESUMEN

The Mediator complex stimulates the cooperative assembly of a pre-initiation complex (PIC) and recruitment of RNA Polymerase II (Pol II) for gene activation. The core Mediator complex is organized into head, middle, and tail modules, and in budding yeast (Saccharomyces cerevisiae), Mediator recruitment has generally been ascribed to sequence-specific activators engaging the tail module triad of Med2-Med3-Med15 at upstream activating sequences (UASs). We show that yeast lacking Med2-Med3-Med15 are viable and that Mediator and PolII are recruited to promoters genome-wide in these cells, albeit at reduced levels. To test whether Mediator might alternatively be recruited via interactions with the PIC, we examined Mediator association genome-wide after depleting PIC components. We found that depletion of Taf1, Rpb3, and TBP profoundly affected Mediator association at active gene promoters, with TBP being critical for transit of Mediator from UAS to promoter, while Pol II and Taf1 stabilize Mediator association at proximal promoters.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Complejo Mediador/genética , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Complejo Mediador/metabolismo , Modelos Genéticos , Mutación , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo
8.
Sci Rep ; 8(1): 7464, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29749381

RESUMEN

The ability of isolated neural stem cells (NSCs) to proliferate as neurospheres is indicative of their competence as stem cells, and depends critically on the polycomb group (PcG) member Bmi1: knockdown of Bmi1 results in defective proliferation and self-renewal of isolated NSCs, whereas overexpression of Bmi1 enhances these properties. Here we report genome-wide changes in gene expression in embryonic and adult NSCs (eNSCs and aNSCs) caused by overexpression of Bmi1. We find that genes whose expression is altered by perturbations in Bmi1 levels in NSCs are mostly distinct from those affected in other multipotent stem/progenitor cells, such as those from liver and lung, aside from a small core of common targets that is enriched for genes associated with cell migration and mobility. We also show that genes differing in expression between prospectively isolated quiescent and activated NSCs are not affected by Bmi1 overexpression. In contrast, a comparison of genes showing altered expression upon Bmi1 overexpression in eNSCs and in aNSCs reveals considerable overlap, in spite of their different provenances in the brain and their differing developmental programs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Células-Madre Neurales/metabolismo , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Regulación hacia Arriba , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Células-Madre Neurales/citología
9.
PLoS Genet ; 14(2): e1007232, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462141

RESUMEN

The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility.


Asunto(s)
Complejo Mediador/fisiología , Regiones Promotoras Genéticas/genética , Recombinación Genética/genética , Retroelementos/genética , Regulación de la Expresión Génica , Productos del Gen gag/genética , Homeostasis/genética , Mutagénesis Insercional/genética , Organismos Modificados Genéticamente , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
G3 (Bethesda) ; 5(5): 829-38, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25748434

RESUMEN

Previous studies have described a transcriptional "memory effect," whereby transcript levels of many Abf1-regulated genes in the budding yeast Saccharomyces cerevisiae are undiminished even after Abf1 has dissociated from its regulatory sites. Here we provide additional support for this effect and investigate its molecular basis. We show that the effect is observed in a distinct abf1 ts mutant from that used in earlier studies, demonstrating that it is robust, and use chromatin immunoprecipitation to show that Abf1 association is decreased similarly from memory effect and transcriptionally responsive genes at the restrictive temperature. We also demonstrate that the association of TATA-binding protein and Pol II decreases after the loss of Abf1 binding for transcriptionally responsive genes but not for memory effect genes. Examination of genome-wide nucleosome occupancy data reveals that although transcriptionally responsive genes exhibit increased nucleosome occupancy in abf1 ts yeast, the promoter regions of memory effect targets show no change in abf1 ts mutants, maintaining an open chromatin conformation even after Abf1 eviction. This contrasting behavior reflects different inherent propensity for nucleosome formation between the two classes, driven by the presence of A/T-rich sequences upstream of the Abf1 site in memory effect gene promoters. These sequence-based differences show conservation in closely related fungi and also correlate with different gene expression noise, suggesting a physiological basis for greater access to "memory effect" promoter regions. Thus, our results establish a conserved mechanism underlying a transcriptional memory effect whereby sequences surrounding Abf1 binding sequences affect local nucleosome occupancy following loss of Abf1 binding. Furthermore, these findings demonstrate that sequence-based differences in the propensity for nucleosome occupancy can influence the transcriptional response of genes to an altered regulatory signal.


Asunto(s)
Cromatina/genética , Regulación Fúngica de la Expresión Génica , Transcripción Genética , Levaduras/genética , Sitios de Unión , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/metabolismo , Levaduras/metabolismo
12.
Mol Cell Biol ; 35(1): 331-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25368384

RESUMEN

Mediator is a large, multisubunit complex that is required for essentially all mRNA transcription in eukaryotes. In spite of the importance of Mediator, the range of its targets and how it is recruited to these is not well understood. Previous work showed that in Saccharomyces cerevisiae, Mediator contributes to transcriptional activation by two distinct mechanisms, one depending on the tail module triad and favoring SAGA-regulated genes, and the second occurring independently of the tail module and favoring TFIID-regulated genes. Here, we use chromatin immunoprecipitation sequencing (ChIP-seq) to show that dependence on tail module subunits for Mediator recruitment and polymerase II (Pol II) association occurs preferentially at SAGA-regulated over TFIID-regulated genes on a genome-wide scale. We also show that recruitment of tail module subunits to active gene promoters continues genome-wide when Mediator integrity is compromised in med17 temperature-sensitive (ts) yeast, demonstrating the modular nature of the Mediator complex in vivo. In addition, our data indicate that promoters exhibiting strong and stable occupancy by Mediator have a wide range of activity and are enriched for targets of the Tup1-Cyc8 repressor complex. We also identify a number of strong Mediator occupancy peaks that overlap dubious open reading frames (ORFs) and are likely to include previously unrecognized upstream activator sequences.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Complejo Mediador/genética , Mutación , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
13.
Mol Cell ; 56(5): 653-66, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25457164

RESUMEN

ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1. RSC inactivation also reduced histone H3 occupancy across transcribed regions. Remarkably, the strongest effects on Pol II and H3 occupancy were confined to the genes displaying the greatest RSC ORF enrichment. Additionally, RSC recruitment to the ORF requires the activities of the SAGA and NuA4 HAT complexes and is aided by the activities of the Pol II CTD Ser2 kinases Bur1 and Ctk1. Overall, our findings strongly implicate ORF-associated RSC in governing Pol II function and in maintaining chromatin structure over transcribed regions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta , Estrés Fisiológico , Transcripción Genética
14.
J Biol Chem ; 289(21): 14981-95, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24727477

RESUMEN

Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction.


Asunto(s)
Histonas/metabolismo , Complejo Mediador/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Northern Blotting , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejo Mediador/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética , Activación Transcripcional
15.
Cell Mol Life Sci ; 70(15): 2743-56, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23361037

RESUMEN

Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Complejo Mediador/metabolismo , Modelos Biológicos , Conformación Proteica , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Complejo Mediador/genética , Subunidades de Proteína/genética , ARN Polimerasa II/metabolismo , Especificidad de la Especie
16.
Transcription ; 3(3): 110-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22771944

RESUMEN

The tail module subunits of Mediator complex are targets of activators both in yeast and metazoans. Here we discuss recent evidence from studies in yeast for tail module specificity for SAGA-dependent, TATA-containing genes including highly regulated stress response genes, and for independent recruitment and function of the tail module.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Reguladores , Complejo Mediador/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Complejo Mediador/metabolismo , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Selección Genética , Estrés Fisiológico , Transcripción Genética
17.
EMBO J ; 31(1): 44-57, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21971086

RESUMEN

The evolutionarily conserved Mediator complex is required for transcription of nearly all RNA Pol II-dependent promoters, with the tail module serving to recruit Mediator to active promoters in current models. However, transcriptional dependence on tail module subunits varies in a gene-specific manner, and the generality of the tail module requirement for transcriptional activation has not been explored. Here, we show that tail module subunits function redundantly to recruit Mediator to promoters in yeast, and transcriptome analysis shows stronger effects on genome-wide expression in a double-tail subunit deletion mutant than in single-subunit deletion mutants. Unexpectedly, TATA-containing and SAGA-dependent genes were much more affected by impairment of tail module function than were TFIID-dependent genes. Consistent with this finding, Mediator and preinitiation complex association with SAGA-dependent promoters is substantially reduced in gal11/med15Δ med3Δ yeast, whereas association of TBP, Pol II, and other Mediator modules with TFIID-dependent genes is largely independent of the tail module. Thus, we have identified a connection between the Mediator tail module and the division of promoter dependence between TFIID and SAGA.


Asunto(s)
Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Transactivadores/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Complejo Mediador/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Transcriptoma
18.
Mol Cell Biol ; 31(21): 4348-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21896781

RESUMEN

To examine the role of nucleosome occupancy in the evolution of gene expression, we measured the genome-wide nucleosome profiles of four yeast species, three belonging to the Saccharomyces sensu stricto lineage and the more distantly related Candida glabrata. Nucleosomes and associated promoter elements at C. glabrata genes are typically shifted upstream by ∼20 bp, compared to their orthologs from sensu stricto species. Nonetheless, all species display the same global organization features first described for Saccharomyces cerevisiae: a stereotypical nucleosome organization along genes and a division of promoters into those that contain or lack a pronounced nucleosome-depleted region (NDR), with the latter displaying a more dynamic pattern of gene expression. Despite this global similarity, however, nucleosome occupancy at specific genes diverged extensively between sensu stricto and C. glabrata orthologs (∼50 million years). Orthologs with dynamic expression patterns tend to maintain their lack of NDR, but apart from that, sensu stricto and C. glabrata orthologs are nearly as similar in nucleosome occupancy patterns as nonorthologous genes. This extensive divergence in nucleosome occupancy contrasts with a conserved pattern of gene expression. Thus, while some evolutionary changes in nucleosome occupancy contribute to gene expression divergence, nucleosome occupancy often diverges extensively with apparently little impact on gene expression.


Asunto(s)
Candida glabrata/genética , Evolución Molecular , Genoma Fúngico , Nucleosomas/genética , Saccharomyces/genética , Candida glabrata/clasificación , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Flujo Genético , Estudio de Asociación del Genoma Completo , Saccharomyces/clasificación , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética
19.
Trends Genet ; 27(4): 141-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21295369

RESUMEN

The binding of transcription factors to specific DNA target sequences is the fundamental basis of gene regulatory networks. Chromatin immunoprecipitation combined with DNA tiling arrays or high-throughput sequencing (ChIP-chip and ChIP-seq, respectively) has been used in many recent studies that detail the binding sites of various transcription factors. Surprisingly, data from a variety of model organisms and tissues have demonstrated that transcription factors vary greatly in their number of genomic binding sites, and that binding events can significantly exceed the number of known or possible direct gene targets. Thus, current understanding of transcription factor function must expand to encompass what role, if any, binding might have outside of direct transcriptional target regulation. In this review, we discuss the biological significance of genome-wide binding of transcription factors and present models that can account for this phenomenon.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Factores de Transcripción/genética , Animales , Cromosomas , Redes Reguladoras de Genes , Humanos , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Nucleic Acids Res ; 39(6): 2032-44, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21081559

RESUMEN

The packaging of eukaryotic DNA into chromatin has profound consequences for gene regulation, as well as for other DNA transactions such as recombination, replication and repair. Understanding how this packaging is determined is consequently a pressing problem in molecular genetics. DNA sequence, chromatin remodelers and transcription factors affect chromatin structure, but the scope of these influences on genome-wide nucleosome occupancy patterns remains uncertain. Here, we use high resolution tiling arrays to examine the contributions of two general regulatory factors, Abf1 and Rap1, to nucleosome occupancy in Saccharomyces cerevisiae. These factors have each been shown to bind to a few hundred promoters, but we find here that thousands of loci show localized regions of altered nucleosome occupancy within 1 h of loss of Abf1 or Rap1 binding, and that altered chromatin structure can occur via binding sites having a wide range of affinities. These results indicate that DNA-binding transcription factors affect chromatin structure, and probably dynamics, throughout the genome to a much greater extent than previously appreciated.


Asunto(s)
Cromatina/química , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/fisiología , Factores de Transcripción/fisiología , Sitios de Unión , Proteínas de Unión al ADN/análisis , Genoma Fúngico , Nucleosomas/química , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/análisis , Complejo Shelterina , Proteínas de Unión a Telómeros/análisis , Factores de Transcripción/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA