Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
2.
Proc Natl Acad Sci U S A ; 120(45): e2308655120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903249

RESUMEN

The ongoing SARS-CoV-2 epidemic was marked by the repeated emergence and replacement of "variants" with genetic and phenotypic distance from the ancestral strains, the most recent examples being viruses of the Omicron lineage. Here, we describe a hamster direct contact exposure challenge model to assess protection against reinfection conferred by either vaccination or prior infection. We found that two doses of self-amplifying RNA vaccine based on the ancestral Spike ameliorated weight loss following Delta infection and decreased viral loads but had minimal effect on Omicron BA.1 infection. Prior vaccination followed by Delta or BA.1 breakthrough infections led to a high degree of cross-reactivity to all tested variants, suggesting that repeated exposure to antigenically distinct Spikes, via infection and/or vaccination drives a cross-reactive immune response. Prior infection with ancestral or Alpha variant was partially protective against BA.1 infection, whereas all animals previously infected with Delta and exposed to BA.1 became reinfected, although they shed less virus than BA.1-infected naive hamsters. Hamsters reinfected with BA.1 after prior Delta infection emitted infectious virus into the air, indicating that they could be responsible for onwards airborne transmission. We further tested whether prior infection with BA.1 protected from reinfection with Delta or later Omicron sublineages BA.2, BA.4, or BA.5. BA.1 was protective against BA.2 but not against Delta, BA.4, or BA.5 reinfection. These findings suggest that cohorts whose only immune experience of COVID-19 is Omicron BA.1 infection may be vulnerable to future circulation of reemerged Delta-like derivatives, as well as emerging Omicron sublineages.


Asunto(s)
COVID-19 , Hepatitis D , Animales , Cricetinae , Infección Irruptiva , Reinfección , Reacciones Cruzadas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
PLoS Pathog ; 19(8): e1011545, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535672

RESUMEN

New variants of SARS-CoV-2 are continually emerging with mutations in spike associated with increased transmissibility and immune escape. Phenotypic maps can inform the prediction of concerning mutations from genomic surveillance, however most of these maps currently derive from studies using monomeric RBD, while spike is trimeric, and contains additional domains. These maps may fail to reflect interdomain interactions in the prediction of phenotypes. To try to improve on this, we developed a platform for deep mutational scanning using whole trimeric spike. We confirmed a previously reported epistatic effect within the RBD affecting ACE2 binding, that highlights the importance of updating the base spike sequence for future mutational scanning studies. Using post vaccine sera, we found that the immune response of vaccinated individuals was highly focused on one or two epitopes in the RBD and that single point mutations at these positions can account for most of the immune escape mediated by the Omicron BA.1 RBD. However, unexpectedly we found that the BA.1 RBD alone does not account for the high level of antigenic escape by BA.1 spike. We show that the BA.1 NTD amplifies the immune evasion of its associated RBD. BA.1 NTD reduces neutralistion by RBD directed monoclonal antibodies, and impacts ACE2 interaction. NTD variation is thus an important mechanism of immune evasion by SARS-CoV-2. Such effects are not seen when pre-stabilized spike proteins are used, suggesting the interdomain effects require protein mobility to express their phenotype.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Mutagénesis , Mutación , Fenotipo , Glicoproteína de la Espiga del Coronavirus/genética
4.
Lancet Microbe ; 4(8): e579-e590, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37307844

RESUMEN

BACKGROUND: Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2. METHODS: In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18-30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis µ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237. FINDINGS: Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%). INTERPRETATION: After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions. FUNDING: UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.


Asunto(s)
Líquidos Corporales , COVID-19 , Humanos , Adulto , Masculino , Femenino , SARS-CoV-2 , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa , Pruebas Serológicas
5.
Front Microbiol ; 14: 996287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846749

RESUMEN

Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S-10, S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic effects against three soilborne plant pathogens models: Pythium aphanidermatum (oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum (ascomycete). To identify genetic mechanisms potentially responsible for the differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced and compared their genomes, and that of strain UW85 using a hybrid sequencing pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite and chitinase-encoding genes that could potentially explain observed differences in in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene cluster. The UW85 mega-plasmid contained more ABC transporters than the other two strains, whereas the S-25 mega-plasmid carried a unique cluster containing cellulose and chitin degrading genes. Collectively, comparative genomics revealed several mechanisms that can potentially explain differences in in-vitro antagonism of Bcsl strains toward fungal plant pathogens.

6.
Clin Infect Dis ; 76(4): 658-666, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35913410

RESUMEN

BACKGROUND: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based electrochemiluminescence immunoassay (ECLIA) and live virus neutralization. METHODS: In July 2021, 3758 participants performed, at home, a self-administered Fortress LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of immunoglobulin G (IgG) antibodies using the Roche Elecsys® Anti-SARS-CoV-2 ECLIA. We compared the self-reported LFIA result to the quantitative ECLIA and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralization. RESULTS: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on ECLIA (using the manufacturer reference standard threshold for positivity of 0.8 U mL-1). Live virus neutralization was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% confidence interval [CI]: 71.8, 84.6), 142/155 (91.6%; 95% CI: 86.1, 95.5) with ALFA, and 169 (100%; 95% CI: 97.8, 100.0) with ECLIA. There were 81 samples with no detectable virus neutralization; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI: 46.5, 68.9), 34/75 (45.3%; 95% CI: 33.8, 57.3) with ALFA, and 0/81 (0%; 95% CI: 0, 4.5) with ECLIA. CONCLUSIONS: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ECLIA with virus neutralization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Autoevaluación , Sensibilidad y Especificidad , Anticuerpos Antivirales , Inmunoensayo/métodos
7.
Commun Med (Lond) ; 2: 78, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814295

RESUMEN

Background: Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home, but rely on subjective interpretation of a test line by eye, risking false positives and false negatives. Here, we report on the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. Methods: Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. Results: Automated analysis showed substantial agreement with human experts (Cohen's kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). Conclusions: Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false-positive and false-negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests as a tool for improved accuracy for population-level community surveillance.

8.
Sci Rep ; 12(1): 1885, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115570

RESUMEN

At-home sampling is key to large scale seroprevalence studies. Dried blood spot (DBS) self-sampling removes the need for medical personnel for specimen collection but facilitates specimen referral to an appropriately accredited laboratory for accurate sample analysis. To establish a highly sensitive and specific antibody assay that would facilitate self-sampling for prevalence and vaccine-response studies. Paired sera and DBS eluates collected from 439 sero-positive, 382 sero-negative individuals and DBS from 34 vaccine recipients were assayed by capture ELISAs for IgG and IgM antibody to SARS-CoV-2. IgG and IgM combined on DBS eluates achieved a diagnostic sensitivity of 97.9% (95%CI 96.6 to 99.3) and a specificity of 99.2% (95% CI 98.4 to 100) compared to serum, displaying limits of detection equivalent to 23 and 10 WHO IU/ml, respectively. A strong correlation (r = 0.81) was observed between serum and DBS reactivities. Reactivity remained stable with samples deliberately rendered inadequate, (p = 0.234) and when samples were accidentally damaged or 'invalid'. All vaccine recipients were sero-positive. This assay provides a secure method for self-sampling by DBS with a sensitivity comparable to serum. The feasibility of DBS testing in sero-prevalence studies and in monitoring post-vaccine responses was confirmed, offering a robust and reliable tool for serological monitoring at a population level.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiología , Pruebas con Sangre Seca/métodos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , SARS-CoV-2/inmunología , Manejo de Especímenes/métodos , Biomarcadores/sangre , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Estudios de Factibilidad , Femenino , Humanos , Masculino , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
9.
J Virol Methods ; 302: 114475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35077719

RESUMEN

Accurate and sensitive detection of antibody to SARS-CoV-2 remains an essential component of the pandemic response. Measuring antibody that predicts neutralising activity and the vaccine response is an absolute requirement for laboratory-based confirmatory and reference activity. The viral receptor binding domain (RBD) constitutes the prime target antigen for neutralising antibody. A double antigen binding assay (DABA), providing the most sensitive format has been exploited in a novel hybrid manner employing a solid-phase S1 preferentially presenting RBD, coupled with a labelled RBD conjugate, used in a two-step sequential assay for detection and measurement of antibody to RBD (anti-RBD). This class and species neutral assay showed a specificity of 100 % on 825 pre COVID-19 samples and a potential sensitivity of 99.6 % on 276 recovery samples, predicting quantitatively the presence of neutralising antibody determined by pseudo-type neutralization and by plaque reduction. Anti-RBD is also measurable in ferrets immunised with ChadOx1 nCoV-19 vaccine and in humans immunised with both AstraZeneca and Pfizer vaccines. This assay detects anti-RBD at presentation with illness, demonstrates its elevation with disease severity, its sequel to asymptomatic infection and its persistence after the loss of antibody to the nucleoprotein (anti-NP). It also provides serological confirmation of prior infection and offers a secure measure for seroprevalence and studies of vaccine immunisation in human and animal populations. The hybrid DABA also displays the attributes necessary for the detection and quantification of anti-RBD to be used in clinical practice. An absence of detectable anti-RBD by this assay predicates the need for passive immune prophylaxis in at-risk patients.


Asunto(s)
Anticuerpos Antivirales/aislamiento & purificación , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/aislamiento & purificación , COVID-19/diagnóstico , ChAdOx1 nCoV-19 , Hurones , Humanos , ARN Viral , Estudios Seroepidemiológicos
10.
Open Forum Infect Dis ; 8(11): ofab496, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34796246

RESUMEN

BACKGROUND: Seroprevalence studies are essential to understand the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Various technologies, including laboratory assays and point-of-care self-tests, are available for antibody testing. The interpretation of seroprevalence studies requires comparative data on the performance of antibody tests. METHODS: In June 2020, current and former members of the United Kingdom police forces and fire service performed a self-test lateral flow immunoassay (LFIA), had a nurse-performed LFIA, and provided a venous blood sample for enzyme-linked immunosorbent assay (ELISA). We present the prevalence of antibodies to SARS-CoV-2 and the acceptability and usability of self-test LFIAs, and we determine the sensitivity and specificity of LFIAs compared with laboratory ELISA. RESULTS: In this cohort of 5189 current and former members of the police service and 263 members of the fire service, 7.4% (396 of 5348; 95% confidence interval [CI], 6.7-8.1) were antibody positive. Seroprevalence was 8.9% (95% CI, 6.9-11.4) in those under 40 years, 11.5% (95% CI, 8.8-15.0) in those of nonwhite ethnicity, and 7.8% (95% CI, 7.1-8.7) in those currently working. Self-test LFIA had an acceptability of 97.7% and a usability of 90.0%. There was substantial agreement between within-participant LFIA results (kappa 0.80; 95% CI, 0.77-0.83). The LFIAs had a similar performance: compared with ELISA, sensitivity was 82.1% (95% CI, 77.7-86.0) self-test and 76.4% (95% CI, 71.9-80.5) nurse-performed with specificity of 97.8% (95% CI, 97.3-98.2) and 98.5% (95% CI, 98.1-98.8), respectively. CONCLUSIONS: A greater proportion of this nonhealthcare key worker cohort showed evidence of previous infection with SARS-CoV-2 than the general population at 6.0% (95% CI, 5.8-6.1) after the first wave in England. The high acceptability and usability reported by participants and similar performance of self-test and nurse-performed LFIAs indicate that the self-test LFIA is fit for purpose for home testing in occupational and community prevalence studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA