Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 286(5441): 961-4, 1999 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-10542152

RESUMEN

Phototropism of Arabidopsis thaliana seedlings in response to a blue light source is initiated by nonphototropic hypocotyl 1 (NPH1), a light-activated serine-threonine protein kinase. Mutations in three loci [NPH2, root phototropism 2 (RPT2), and NPH3] disrupt early signaling occurring downstream of the NPH1 photoreceptor. The NPH3 gene, now cloned, encodes a NPH1-interacting protein. NPH3 is a member of a large protein family, apparently specific to higher plants, and may function as an adapter or scaffold protein to bring together the enzymatic components of a NPH1-activated phosphorelay.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Membrana Celular/metabolismo , Clonación Molecular , Escherichia coli , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fototropismo , Proteínas de Plantas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas , Técnicas del Sistema de Dos Híbridos
2.
Plant Physiol ; 118(4): 1265-75, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9847100

RESUMEN

Although sessile in nature, plants are able to use a number of mechanisms to modify their morphology in response to changing environmental conditions. Differential growth is one such mechanism. Despite its importance in plant development, little is known about the molecular events regulating the establishment of differential growth. Here we report analyses of the nph4 (nonphototropic hypocotyl) mutants of Arabidopsis that suggest that the NPH4 protein plays a central role in the modulation of auxin-dependent differential growth. Results from physiological studies demonstrate that NPH4 activity is conditionally required for a number of differential growth responses, including phototropism, gravitropism, phytochrome-dependent hypocotyl curvature, apical hook maintenance, and abaxial/adaxial leaf-blade expansion. The nph4 mutants exhibited auxin resistance and severely impaired auxin-dependent gene expression, indicating that the defects associated with differential growth likely arise because of altered auxin responsiveness. Moreover, the auxin signaling events mediating phototropism are genetically correlated with the abundance of the NPH4 protein.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Ácidos Indolacéticos/fisiología , Proteínas de Plantas/fisiología , Alelos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hipocótilo/crecimiento & desarrollo , Hipocótilo/fisiología , Mutación , Fenotipo , Fototropismo/genética , Fototropismo/fisiología , Proteínas de Plantas/genética , Transducción de Señal
3.
Mol Plant Microbe Interact ; 11(7): 668-83, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9650299

RESUMEN

VirD2 is one of the key Agrobacterium tumefaciens proteins involved in T-DNA processing and transfer. In addition to its endonuclease domain, VirD2 contains a bipartite C-terminal nuclear localization sequence (NLS) and a conserved region called omega that is important for virulence. Previous results from our laboratory indicated that the C-terminal, bipartite NLS and the omega region are not essential for nuclear uptake of T-DNA, and further suggested that the omega domain may be required for efficient integration of T-DNA into the plant genome. In this study, we took two approaches to investigate the importance of the omega domain in T-DNA integration. Using the first approach, we constructed a T-DNA binary vector containing a promoterless gusA-intron gene just inside the right T-DNA border. The expression of beta-glucuronidase (GUS) activity in plant cells transformed by this T-DNA would indicate that the T-DNA integrated downstream of a plant promoter. Approximately 0.4% of the tobacco cell clusters infected by a wild-type A. tumefaciens strain harboring this vector stained blue with 5-bromo-4-chloro-3-indolyl beta-D-glucuronic acid (X-gluc). However, using an omega-mutant A. tumefaciens strain harboring the same binary vector, we did not detect any blue staining. Using the second approach, we directly demonstrated that more T-DNA is integrated into high-molecular-weight plant DNA after infection of Arabidopsis thaliana cells with a wild-type A. tumefaciens strain than with a strain containing a VirD2 omega deletion/substitution. Taken together, these data indicate that the VirD2 omega domain is important for efficient T-DNA integration. To determine whether the use of the T-DNA right border is altered in those few tumors generated by A. tumefaciens strains harboring the omega mutation, we analyzed DNA extracted from these tumors. Our data indicate that the right border was used to integrate the T-DNA in a similar manner regardless of whether the VirD2 protein encoded by the inciting A. tumefaciens was wild-type or contained an omega mutation. In addition, a mutant VirD2 protein lacking the omega domain was as least as active in cleaving a T-DNA border in vitro as was the wild-type protein. Finally, we investigated the role of various amino acids of the omega and bipartite NLS domains in the targeting of a GUS-VirD2 fusion protein to the nucleus of electroporated tobacco protoplasts. Deletion of the omega domain, or mutation of the 10-amino-acid region between the two components of the bipartite NLS, had little effect upon the nuclear targeting of the GUS-VirD2 fusion protein. Mutation of both components of the NLS reduced, but did not eliminate, targeting of the fusion protein to the nucleus.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Factores de Virulencia , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Fusión Artificial Génica , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Secuencia de Bases , Línea Celular , Cartilla de ADN , ADN Bacteriano/genética , ADN de Cadena Simple/metabolismo , Glucuronidasa/biosíntesis , Cinética , Datos de Secuencia Molecular , Plantas Tóxicas , Mutación Puntual , Reacción en Cadena de la Polimerasa , ARN Mensajero/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Nicotiana , Factores de Transcripción/biosíntesis , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA