Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39221786

RESUMEN

Chiral amino acids (AAs) are essential in metabolism and understanding physiological processes, and they could be used as biomarkers for the diagnosis of different diseases. In this study, chiral Cdots@Van were prepared by postmodifying an achiral Cdots core with vancomycin for recognizing and determining the enantiomeric excess (ee) of tyrosine (Tyr) enantiomers. The fluorescence response of Cdots@Van is based on an "on-off" strategy, with different quenching percentages for d- and l-tyrosine. Interestingly, the circular dichroism (CD) spectrum of Cdots@Van responded to only one form of Tyr enantiomer, specifically d-Tyr, and remained nearly unchanged upon the addition of l-Tyr. Quantum mechanical (QM) calculations were in excellent agreement with the experimental results, confirming the stronger binding affinity of Cdots@Van for d-Tyr compared to l-Tyr. We further investigated the chiral recognition ability of the interconnected vancomycin particles, which was synthesized using the EDC/NHS coupling reaction between vancomycin molecules without a Cdots core. Surprisingly, unlike free vancomycin molecules, interconnected vancomycin displayed an enantiomeric recognition ability by CD spectroscopy, similar to what was observed for Cdots@Van. Crucially, this chiral probe has been successfully utilized for cell imaging applications.

2.
Food Chem ; 457: 140026, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924909

RESUMEN

Despite the beneficial effects of antibiotics such as chloramphenicol (CAP), they exert some destructive impacts on human health. We designed an electrochemical sensor based on reduced graphene oxide (rGO)/Au/Co2CuS4 nanohybrid for determination of CAP in food and biological samples. The Co2CuS4 was synthesized from binuclear metal-organic framework (CoCu-BDC) through a two-step process. Nanohybrid was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The rGO/Au/Co2CuS4 provides more active sites and good electrical conductivity to reduce charge transfer resistance and improve the electrocatalytic activity for determination of CAP. The prepared sensor has a wide linear range from 7 to 141 nM with a limit of detection of 2.5 nM and a limit of quantification of 21.92 nM. It also provided high selectivity and repeatability with a relative standard deviation of 2.6%. Stability studies showed that the electrode has acceptable performance with efficiency of 95% after 33 days.


Asunto(s)
Cloranfenicol , Cobalto , Técnicas Electroquímicas , Oro , Grafito , Grafito/química , Cloranfenicol/análisis , Cloranfenicol/química , Técnicas Electroquímicas/instrumentación , Oro/química , Cobalto/química , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Límite de Detección , Antibacterianos/análisis , Antibacterianos/química , Nanopartículas/química , Animales , Óxidos/química
3.
Talanta ; 269: 125450, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042141

RESUMEN

Bisphenol A (BPA) is one of key raw materials used in the production of epoxy resins and plastics, which has toxicological effects on humans by disrupting cell functions through a variety of cell signaling pathways. Therefore, it is of great significance to develop a simple, rapid, and accurate BPA detection method in real water samples. In this study, a ratiometric fluorescence method based on yellow-emitting surface-functionalized polymer dots (PFBT@L Pdots) and blue-emitting carbon dots (Cdots) was described for the detection of BPA. Pdots as the detecting part were synthesized by using highly fluorescent hydrophobic Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT) polymer and (R)-5,11,17,23-Tetra-tert-butyl-25,27-bis[(diphenylphosphinoyl)methoxy]-26-(3-oxabutyloxy)-28-[(1-phenylethyl)- carbamoylmethoxy]calix [4]arene (L) functionalizing ligand, and Cdots as internal reference were prepared by hydrothermal treatment of citric acid and urea. In the presence of BPA, chemical binding of the phosphorus atoms of nearby PFBT@L Pdots with BPA hydroxyl functional groups led to the aggregation of the PFBT@L Pdots aggregation and quenching their yellow emission, but the blue emission of Cdots, on the other hand, remained stable. The proposed PFBT@L Pdots probe was successfully applied for the detection of BPA in real water samples, and the results were in good agreement with those obtained by HPLC-FLD. To the best of our knowledge, this is the first report that the calixarene has been utilized to modify Pdots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA