Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114008, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536819

RESUMEN

The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.


Asunto(s)
Células Endoteliales , Dispositivos Laboratorio en un Chip , Humanos , Células Endoteliales/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Lipoproteínas LDL/metabolismo , Diferenciación Celular , Células Madre Pluripotentes/metabolismo
2.
Lab Chip ; 21(23): 4685-4695, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34751293

RESUMEN

Human induced pluripotent stem cells (hiPSCs) can serve as an unlimited source to rebuild organotypic tissues in vitro. Successful engineering of functional cell types and complex organ structures outside the human body requires knowledge of the chemical, temporal, and spatial microenvironment of their in vivo counterparts. Despite an increased understanding of mouse and human embryonic development, screening approaches are still required for the optimization of stem cell differentiation protocols to gain more functional mature cell types. The liver, lung, pancreas, and digestive tract originate from the endoderm germ layer. Optimization and specification of the earliest differentiation step, which is the definitive endoderm (DE), is of central importance for generating cell types of these organs because off-target cell types will propagate during month-long cultivation steps and reduce yields. Here, we developed a microfluidic large-scale integration (mLSI) chip platform for combined automated three-dimensional (3D) cell culturing and high-throughput imaging to investigate anterior/posterior patterns occurring during hiPSC differentiation into DE cells. Integration of 3D cell cultures with a diameter of 150 µm was achieved using a U-shaped pneumatic membrane valve, which was geometrically optimized and fluidically characterized. Upon parallelization of 32 fluidically individually addressable cell culture unit cells with a total of 128 3D cell cultures, complex and long-term DE differentiation protocols could be automated. Real-time bright-field imaging was used to analyze cell growth during DE differentiation, and immunofluorescence imaging on optically cleared 3D cell cultures was used to determine the DE differentiation yield. By systematically alternating transforming growth factor ß (TGF-ß) and WNT signaling agonist concentrations and temporal stimulation, we showed that even under similar DE differentiation yields, there were patterning differences in the 3D cell cultures, indicating possible differentiation differences between established DE protocols. The automated mLSI chip platform with the general analytical workflow for 3D stem cell cultures offers the optimization of in vitro generation of various cell types for cell replacement therapies.


Asunto(s)
Endodermo , Células Madre Pluripotentes Inducidas , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos
3.
Nat Biomed Eng ; 5(8): 897-913, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239116

RESUMEN

Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facilitates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Using time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pancreatic progenitors through ductal intermediates to two types of mature duct-like cells and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial-mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic duct models.


Asunto(s)
Diferenciación Celular , Dispositivos Laboratorio en un Chip , Organoides/citología , Conductos Pancreáticos/citología , Animales , Biomarcadores de Tumor/metabolismo , Reprogramación Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Filaminas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mucinas/metabolismo , Organoides/metabolismo , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Análisis de la Célula Individual , Tasa de Supervivencia
4.
Lab Chip ; 21(13): 2557-2564, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-33999087

RESUMEN

High-resolution live imaging promises new insights into the cellular and molecular dynamics of the plant root system in response to external cues. Microfluidic platforms are valuable analytical tools that combine the precise spatial and temporal control of culture conditions with live-imaging capabilities. However, complexity in the fabrication and operations of current plant microfluidic platforms limits their use to a few technologically-focused laboratories. Here, we design and characterize an easy-to-implement 3D printed open microfluidic platform for Arabidopsis thaliana roots. Our biocompatibility study identified a suitable material for the platform production and an established drought stress assay validates the reliability of our stereolithography (SLA)-based next generation RootChip.


Asunto(s)
Arabidopsis , Microfluídica , Reproducibilidad de los Resultados , Estereolitografía
6.
Soft Matter ; 10(14): 2414-23, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24622969

RESUMEN

Confining cells on adhesive patterns allows performing robust, weakly dispersed, statistical analysis. A priori, adhesive patterns could be efficient tools to analyze intracellular cell stress fields, in particular when patterns are used to force the geometry of the cytoskeleton. This tool could then be very helpful in deciphering the relationship between the internal architecture of the cells and the mechanical, intracellular stresses. However, the quantification of the intracellular stresses is still something delicate to perform. Here we first propose a new, very simple and original method to quantify the intracellular stresses, which directly relates the strain the cells impose on the extracellular matrix to the intracellular stress field. This method is used to analyze how confinement influences the intracellular stress field. As a result, we show that the more confined the cells are, the more stressed they will be. The influence of the geometry of the adhesive patterns on the stress patterns is also discussed.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/fisiología , Modelos Biológicos , Estrés Mecánico , Adhesión Celular , Módulo de Elasticidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...