Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(42): 17136-17149, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37824401

RESUMEN

Two 1D coordination polymers (CPs) with general formula [M(L)(H2O)(AcO)]n, (M = Co (1) or Cd (2), AcO = acetate anion and L denotes l-phenylalanine based ligand), were synthesized and fully characterized by various spectroscopies (UV-vis, FTIR, and NMR), thermal techniques, magnetic measurements (for 1), and single-crystal and powder X-ray diffraction studies. They can be described as "ribbon-like" 1D polymers constructed through a zigzag arrangement. The polymeric structure is developed due to the coordination mode adopted by the amino acid ligand, classified as µ3-N1O1:O1:O2, which simultaneously links three metal centers. This moiety also plays an important role as a magnetic coupler between metal centers in the cobalt system, which shows a weak antiferromagnetic interaction. Both CPs have also been used in the catalytic oxidation of cyclohexene with molecular oxygen (O2) as an oxidant. Under mild conditions, both compounds demonstrated remarkable catalytic activity, with the cobalt system being more efficient than the cadmium analogue (conversion: 73 and 58% and selectivity for the major product, 2-cyclohexanone: 63 and 55%, for 1 and 2, respectively). Leaching experiments and the results obtained using a radical quencher are consistent with a radical-mediated mechanism for the Co compound. The presence of the superoxide radical was also confirmed using EPR spectroscopy and DMPO as a spin trap, which was further validated by DFT calculations. The activity observed for the Cd analogue is attributed to the organic scaffold assisted by the templating effect of the metal ion.

2.
BMC Biol ; 21(1): 66, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013555

RESUMEN

BACKGROUND: Guanine crystals are organic biogenic crystals found in many organisms. Due to their exceptionally high refractive index, they contribute to structural color and are responsible for the reflective effect in the skin and visual organs in animals such as fish, reptiles, and spiders. Occurrence of these crystals in animals has been known for many years, and they have also been observed in eukaryotic microorganisms, but not in prokaryotes. RESULTS: In this work, we report the discovery of extracellular crystals formed by bacteria and reveal that they are composed of guanine monohydrate. This composition differs from that of biogenic guanine crystals found in other organisms, mostly composed of ß anhydrous guanine. We demonstrate the formation of these crystals by Aeromonas and other bacteria and investigate the metabolic traits related to their synthesis. In all cases studied, the presence of the bacterial guanine crystals correlates with the absence of guanine deaminase, which could lead to guanine accumulation providing the substrate for crystal formation. CONCLUSIONS: Our finding of the hitherto unknown guanine crystal occurrence in prokaryotes extends the range of organisms that produce these crystals to a new domain of life. Bacteria constitute a novel and more accessible model to study the process of guanine crystal formation and assembly. This discovery opens countless chemical and biological questions, including those about the functional and adaptive significance of their production in these microorganisms. It also paves the road for the development of simple and convenient processes to obtain biogenic guanine crystals for diverse applications.


Asunto(s)
Peces , Guanina , Animales , Guanina/química , Piel , Bacterias
3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 825-838, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017316

RESUMEN

The formation of the symmetrical µ3-carbonate-bridged self-assembled trinuclear NiII complex Na2{[Ni(LO)2(H2O)]3(µ3-CO3)} (LO is the carboxylate anion of a L-tyrosine derivative), involves atmospheric CO2 uptake. The asymmetric unit of the complex comprises an octahedral coordination for the NiII with two L-tyrosine-based ligands, a water molecule and one O atom of the carbonate bridge. The Ni3-µ3-CO3 core in this compound is the first reported of this kind according to the Cambridge Structural Database (CSD). The supramolecular structure is mainly sustained by hydrogen bonds developed by the phenolic functionality of the L-tyrosine moiety of one ligand and the carboxylate group of a neighbouring ligand. The crystal packing is then characterized by three interpenetrated supramolecular helices associated with a diastereoisomer of the type R-supP, which is essential for the assembly process. Magnetic susceptibility and magnetization data support weak ferromagnetic exchange interactions within the novel Ni3-µ3-CO3 core. The NiII complex obtained under the same synthetic conditions but using the analogous ligand derived from the amino acid L-phenylalanine instead of L-tyrosine gives rise to to a mononuclear octahedral system. The results obtained for the different complexes demonstrate the role of the supramolecular structure regarding the CO2 uptake property for these NiII-amino-acid-based systems.


Asunto(s)
Dióxido de Carbono/química , Complejos de Coordinación/química , Níquel/química , Tirosina/química , Complejos de Coordinación/síntesis química , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Tirosina/síntesis química
4.
Acta Crystallogr C Struct Chem ; 73(Pt 5): 399-406, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28469066

RESUMEN

Despite the large number of reported crystalline structures of coordination complexes bearing pyridines as ligands, the relevance of π-π interactions among these hereroaromatic systems in the stabilization of their supramolecular structures and properties is not very well documented in the recent literature. The title compound, [CoCl2(C5H6N2)2], was obtained as bright-blue crystals suitable for single-crystal X-ray diffraction analysis from the reaction of 4-aminopyridine with cobalt(II) chloride in ethanol. The new complex was fully characterized by a variety of spectroscopic techniques and single-crystal X-ray diffraction. The crystal structure showed a tetrahedral complex stabilized mainly by bidimensional motifs constructed by π-π interactions with large horizontal displacements between the 4-aminopyridine units, and N-H...Cl hydrogen bonds. Other short contacts, such as C-H...Cl interactions, complete the three-dimensional arrangement. The supramolecular investigation was extended by statistical studies using the Cambridge Structural Database and a Hirshfeld surface analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA