Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 45(1): 11-20, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30122088

RESUMEN

OBJECTIVE: The current study involves the development of liposomal dry powder for inhalation (LDPI) containing licorice extract (LE) for use in tuberculosis. SIGNIFICANCE: The current epidemiology of tuberculosis along with the increasing emergence of resistant forms of tuberculosis necessitates the need for developing alternative efficacious medicines for treatment. Licorice is a medicinal herb with reported activity against Mycobacterium tuberculosis. METHODS: Liposomes with LE were prepared by thin film hydration technique and freeze dried to obtain LDPI. The comprehensive in vitro and in vivo characterization of the LDPI formulation was carried out. RESULTS: The particle size of liposomes was around 210 nm with drug entrapment of almost 75%. Transmission electron microscopy revealed spherical shape of liposome vesicles. The flow properties of the LDPI were within acceptable limits. Anderson Cascade Impactor studies showed the mean median aerodynamic diameter, geometric standard deviation and fine particle fraction of the LDPI to be 4.29 µm, 1.23, and 54.68%, respectively. In vivo lung deposition studies of LDPI in mice showed that almost 46% of the drug administered reaches the lungs and 16% of administered drug is retained in the lungs after 24 hours of administration. The in vivo pharmacodynamic evaluation of the LDPI showed significant reduction in bacterial counts in lungs as well as spleen of TB-infected mice. CONCLUSIONS: LE LDPI thus has a promising potential to be explored as an effective anti-tubercular medicine or as an adjunct to existing anti-tubercular drugs.


Asunto(s)
Antituberculosos/administración & dosificación , Glycyrrhiza , Pulmón/efectos de los fármacos , Tamaño de la Partícula , Extractos Vegetales/administración & dosificación , Tuberculosis/tratamiento farmacológico , Administración por Inhalación , Animales , Antituberculosos/química , Antituberculosos/farmacocinética , Composición de Medicamentos , Liposomas , Pulmón/metabolismo , Ratones , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacocinética , Raíces de Plantas , Tuberculosis/metabolismo
2.
Pharmacogn Mag ; 13(Suppl 2): S209-S215, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28808382

RESUMEN

BACKGROUND: Long duration of treatment, side-effects of currently used anti-tubercular drugs and emergence of drug-resistant forms of Mycobacterium tuberculosis (MTB) warrants the need to develop new drugs to tackle the scourge of tuberculosis (TB). Garlic is an edible plant reported to have anti-tubercular activity. However, previous researches on anti-tubercular effect of garlic were focused mostly on preliminary in vitro screening. OBJECTIVE: To identify constituents responsible for anti-tubercular activity of thiosulfinate-derivative rich extract of garlic (GE) and to evaluate activity of the most active constituent in RAW 264.7 mouse macrophage cells infected with M. tuberculosis H37Rv (MTBH). MATERIALS AND METHODS: In the present study, we have isolated eight compounds from GE by flash chromatography. The isolated compounds were characterized by 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry and Fourier transform infrared spectroscopy. Individual isolates and GE were screened for activity against MTBH by Resazurin Microtitre Plate Assay (REMA). RESULTS: Anti-tubercular activity of GE was superior to that of isolates when evaluated by REMA, possibly due to synergism amongst the constituents of GE. Cytotoxicity of GE was evaluated in RAW 264.7 mouse macrophage cells and it was observed that GE had a favorable selectivity index (>10). Therefore, anti-tubercular activity of GE was further evaluated by intracellular macrophage infection model. GE demonstrated concentration-dependent activity in macrophages infected with MTBH. CONCLUSION: This is the first report on intracellular anti-tubercular activity of any extract of garlic or its components. Appreciable intracellular anti-tubercular activity of GE in macrophages combined with low cytotoxicity makes it a suitable candidate for further development as an anti-tubercular agent. SUMMARY: Thiosulfinate-derivative rich extract of Allium sativum showed better activity than its isolated constituents against Mycobacterium tuberculosis H37Rv.(MTBH) when evaluated by Resazurin Microtitre Plate AssayThe extract showed least cytotoxic potential against RAW 264.7 mouse macrophage cells as compared to rifampicin, isoniazid and ethambutol when evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The extract had an appreciable selectivity indexExtract showed appreciable activity in RAW 264.7 mouse macrophage cells infected with MTBH, indicating its potential to be developed further as an anti-tubercular agent that can be administered as an adjunct to the existing anti-tubercular drug regimen. Abbreviations used: TB: Tuberculosis, MTB: Mycobacterium tuberculosis, MTBH: Mycobacterium tuberculosis H37Rv, GE: Thiosulfinate-derivative rich extract of garlic, REMA: Resazurin Microtitre Plate Assay, VD: Vinyldithiin, CFU: Colony forming unit, 1H NMR: 1H nuclear magnetic resonance spectroscopy, FT-IR: Fourier transform-infrared spectroscopy, LC-MS: Liquid chromatography-mass spectrometry, IC50: Concentration required to inhibit the cells by 50%, ANOVA: Analysis of variance.

3.
J AOAC Int ; 99(2): 374-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27103104

RESUMEN

Glabridin is a major bioactive phytoconstituent of licorice. This work discusses the development and validation of HPLC and HPTLC methods for analysis of glabridin in licorice. The HPLC separation was performed using a Purospher STAR RP-18e column (5 µm silica particle size, 250 mm × 4.6 mm inner diameter) with gradient elution of 0.2% acetic acid in water-acetonitrile. The flow rate was 1 mL/min. Quantification was performed at a detection wavelength of 280 nm. HTPLC separation was performed on precoated silica gel 60 F254 aluminum plate (10 × 10 cm, 250 µm thickness). A linear ascending development was done using a mobile phase of hexane-ethyl acetate-chloroform (5 + 4 + 3, v/v/v). After development, the plates were scanned at 285 nm. Both of the methods provided good separation of glabridin from other constituents of licorice extract. The methods were validated as per ICH guidelines. Comparison by Student t-test showed that there was a statistically insignificant difference between the mean glabridin content estimated by both methods at 95% confidence interval. The glabridin content in licorice extract was 3.90% by HPLC and 3.79% by HPTLC.


Asunto(s)
Glycyrrhiza/química , Isoflavonas/análisis , Fenoles/análisis , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Isoflavonas/química , Fenoles/química
4.
Pharmacognosy Res ; 6(4): 334-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25276072

RESUMEN

BACKGROUND: Garlic (Allium sativum) has been known to exhibit a wide range of pharmacological activities which are attributed mainly to the organosulfur compounds present in it. Allicin and garlic oil, components obtained from garlic, have been explored and found to be biologically active on various fronts. Allicin is known to have major stability issues due to rapid degradation even at low temperatures, whereas garlic oil, being lipophilic, shows poor bioavailability after oral administration. OBJECTIVE: To develop novel strategies for optimum delivery of allicin and garlic oil so as to achieve effective availability in the physiological system. MATERIALS AND METHODS: Garlic cloves were lyophilized to obtain allicin-releasing garlic powder (ARGP). This powder was analyzed spectrophotometrically and was used to formulate buccal tablets. Garlic oil was obtained by hydrodistillation of garlic cloves and analyzed by gas chromatography. Self-nanoemulsifying systems (SNS) containing garlic oil were prepared using suitable surfactants and cosurfactants. The SNS were adsorbed on Aerosil 200 and filled in hard gelatin capsules. Both the formulations were suitably evaluated. RESULTS: Buccal tablets containing ARGP showed satisfactory physical parameters as well as in vitro drug release, mucoadhesive strength, moisture uptake capacity and drug content. Evaluation of capsules containing SNS of garlic oil also gave satisfactory results. The adsorbed SNS when dispersed in water formed nanoemulsions. CONCLUSION: Buccal tablets as well as capsules containing garlic oil SNS provide promising strategies to overcome the difficulties associated with formulation of allicin and garlic oil.

5.
Indian J Pharm Sci ; 76(3): 256-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25035540

RESUMEN

Tuberculosis is one of the major public health problems faced globally. Resistance of Mycobacterium tuberculosis to antitubercular agents has called for an urgent need to investigate newer drugs to combat tuberculosis. Garlic (Allium sativum) is an edible plant which has generated a lot of curiosity throughout human history as a medicinal plant. Garlic contains sulfur compounds like allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide and others which exhibit various biological properties like antimicrobial, anticancer, antioxidant, immunomodulatory, antiinflammatory, hypoglycemic, and cardiovascular effects. According to various traditional systems of medicine, garlic is one of the established remedies for tuberculosis. The objective of the current study was to investigate in vitro antimycobacterial activity as well as anti-bacterial activity of various extracts rich in specific phytoconstituents from garlic. Preparation of garlic extracts was done based on the chemistry of the constituents and their stability. The estimation of in vitro antimycobacterial activity of different garlic extracts was done using Resazurin microtire plate assay technique whereas activity of garlic oil was evaluated by colony count method. The antibacterial activity of extracts and oil was estimated by zone of inhibition method. Extracts of garlic rich in allicin and ajoene showed appreciable antimycobacterial activity as compared to standard drugs. Garlic oil demonstrated significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus.

6.
Pharmacogn Rev ; 5(9): 13-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096314

RESUMEN

Recent reports reveal that there is increasing incidence of infections of multidrug-resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Flavonoids and related compounds have been shown to possess potent antimicrobial activities. Most of the flavonoids are considered as constitutive antimicrobial substances recently termed as "Phytoanticipins," especially those belonging to prenylated flavonoids and isoflavones. The current review highlights the structure prerequisites for isoflavones as antibacterial agents. Structure-activity relationship (SAR) conclusions have been drawn by comparing the reported minimum inhibitory concentration values for the various isoflavones against S. aureus and MRSA. There exists a significant co-relationship between the presence of certain functional groups (prenyl group, phenolic hydroxyl) at particular positions and antibacterial activity of the compounds. These trends have been postulated with a view of assisting better drug designing of future next-generation antiinfectives, particularly against the bothersome multidrug-resistant microbes. The SAR of these isoflavones has also proved to be a basis to explore the mechanism of antibacterial action. Thus, the study would prove extremely useful to synthesize antibacterial isoflavones in future, which would eventually be beneficial for optimizing the lead molecule for the antibacterial action.

7.
AAPS PharmSciTech ; 5(1): E19, 2004 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-15198540

RESUMEN

The purpose of this research was to improve the solubility and therefore dissolution and bioavailability of triamterene, a poorly water soluble diuretic, by complexation with beta-cyclodextrin. Triamterene has been reported to show low bioavailability after oral administration, with wide intersubject variation. This study presents the formulation of solid dispersions of triamterene with beta-cyclodextrin--by cogrinding, kneading, and coevaporation, using low pH conditions--and their characterization, evaluation of improvement in dissolution profiles, and in vivo advantage. Phase solubility studies indicated complex with possible stoichiometry of 1:1 and a stability constant of 167.67 M(-1). The solid dispersions were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, x-ray diffraction, and differential scanning calorimetry studies. The characterization studies confirmed inclusion of the phenyl ring of triamterene within the nonpolar cavity of beta-cyclodextrin in the coevaporate. Remarkable improvement in in vitro drug release profiles in 0.1N HCl and pH 6.8 phosphate buffer was observed with all dispersions, especially the coevaporate. The coevaporate, when administered orally in rats, also exhibited improved in vivo activity, as measured by net sodium ion excretion, as compared with triamterene powder. Thus, coevaporation of the drug and beta-cyclodextrin from acidified alcohol provide the optimum condition for inclusion complexation to give a binary system with remarkable improvement in in vitro drug release profile and in vivo performance.


Asunto(s)
Ciclodextrinas/química , Triantereno/química , beta-Ciclodextrinas , Animales , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Masculino , Ratas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...