Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Brain Plast ; 9(1-2): 43-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993577

RESUMEN

In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.

2.
Temperature (Austin) ; 10(3): 379-393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554387

RESUMEN

We have previously identified predator odor as a potent stimulus activating thermogenesis in skeletal muscle in rats. As this may prove relevant for energy balance and weight loss, the current study investigated whether skeletal muscle thermogenesis was altered with negative energy balance, obesity propensity seen in association with low intrinsic aerobic fitness, and monogenic obesity. First, weight loss subsequent to 3 wk of 50% calorie restriction suppressed the muscle thermogenic response to predator odor. Next, we compared rats bred based on artificial selection for intrinsic aerobic fitness - high- and low-capacity runners (HCR, LCR) - that display robust leanness and obesity propensity, respectively. Aerobically fit HCR showed enhanced predator odor-induced muscle thermogenesis relative to the less-fit LCR. This contrasted with the profound monogenic obesity displayed by rats homozygous for a loss of function mutation in Melanocortin 4 receptor (Mc4rK3a,4X/K314X rats), which showed no discernable deficit in thermogenesis. Taken together, these data imply that body size or obesity per se are not associated with deficient muscle thermogenesis. Rather, the physiological phenotype associated with polygenic obesity propensity may encompass pleiotropic mechanisms in the thermogenic pathway. Adaptive thermogenesis associated with weight loss also likely alters muscle thermogenic mechanisms.

3.
Brain Connect ; 13(9): 541-552, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578129

RESUMEN

Introduction: The habenula, a brain region involved in aversion, might negatively modulate caloric intake. Functional magnetic resonance imaging (fMRI) studies reported associations between weight loss and habenula functional connectivity. However, whether habenula resting-state functional connectivity (rsFC) and reward-related activity are altered in obesity is yet unknown. Methods: Using data from the Human Connectome Project, we included 300 subjects with various body mass indexes (BMIs) and a healthy long-term blood glucose (hemoglobin A1c [HbA1c]). In addition, we investigated a potential BMI × HbA1c interaction in a separate cohort including subjects with prediabetes (n = 72). Habenula rsFC was assessed using a region of interest (ROI)-to-ROI analysis. Furthermore, a separate analysis using gambling task fMRI data focused on reward-related habenula activity. Results: We did not find an association between BMI and habenula rsFC for any of the ROIs. For the exploratory analysis of the BMI × HbA1c effect, a significant interaction effect was found for the habenula-ventral tegmental area (VTA) connection, but this did not survive multiple comparisons correction. Monetary punishment compared with reward activated the bilateral habenula in the BMI sample, but this activity was not associated with BMI. Discussion: In conclusion, we did not find evidence for an association between BMI and habenula rsFC or reward-related activity. However, there might be an interaction between BMI and HbA1c for the habenula-VTA rsFC, suggestive of a role of the habenula in glucose regulation. Future studies should focus on metabolic parameters in their experimental design to confirm our findings and explore the precise role of the habenula in metabolism.


Asunto(s)
Conectoma , Habénula , Humanos , Conectoma/métodos , Habénula/diagnóstico por imagen , Habénula/fisiología , Hemoglobina Glucada , Imagen por Resonancia Magnética , Obesidad/diagnóstico por imagen , Recompensa
4.
Physiol Behav ; 268: 114239, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196819

RESUMEN

Physical exercise training has been positioned as a behavioral strategy to prevent or alleviate obesity via promotion of energy expenditure as well as modulation of energy intake resulting from changes in dietary preference. Brain adaptations underlying the latter process are incompletely understood. Voluntary wheel running (VWR) is a self-reinforcing rodent paradigm that mimics aspects of human physical exercise training. Behavioral and mechanistic insight from such fundamental studies can help optimize therapies that improve body weight and metabolic health based on physical exercise training in humans. To assess the effects of VWR on dietary self-selection, male Wistar rats were given access to a two-component "no-choice" control diet (CD; consisting of prefabricated nutritionally complete pellets and a bottle with tap water) or a four-component free-choice high-fat high-sucrose diet (fc-HFHSD; consisting of a container with prefabricated nutritionally complete pellets, a dish with beef tallow, a bottle with tap water, and a bottle with 30% sucrose solution). Metabolic parameters and baseline dietary self-selection behavior during sedentary (SED) housing were measured for 21 days, after which half of the animals were allowed to run on a vertical running wheel (VWR) for another 30 days. This resulted in four experimental groups (SEDCD, SEDfc-HFHSD, VWRCD, and VWRfc-HFHSD). Gene expression of opioid and dopamine neurotransmission components, which are associated with dietary self-selection, was assessed in the lateral hypothalamus (LH) and nucleus accumbens (NAc), two brain regions involved in reward-related behavior, following 51 and 30 days of diet consumption and VWR, respectively. Compared to CD controls, consumption of fc-HFHSD before and during VWR did not alter total running distances. VWR and fc-HFHSD had opposite effects on body weight gain and terminal fat mass. VWR transiently lowered caloric intake and increased and decreased terminal adrenal and thymus mass, respectively, independent of diet. VWR during fc-HFHSD consumption consistently increased CD self-selection, had an acute negative effect on fat self-selection, and a delayed negative effect on sucrose solution self-selection compared to SED controls. Gene expression of opioid and dopamine neurotransmission components in LH and NAc were unaltered by fc-HFHSD or VWR. We conclude that VWR modulates fc-HFHSD component self-selection in a time-dependent manner in male Wistar rats.


Asunto(s)
Analgésicos Opioides , Actividad Motora , Ratas , Animales , Bovinos , Masculino , Humanos , Ratas Wistar , Analgésicos Opioides/farmacología , Dopamina/farmacología , Dieta Alta en Grasa , Peso Corporal , Sacarosa/farmacología
5.
Nutr Neurosci ; 25(3): 621-630, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32654659

RESUMEN

Introduction: Neuropeptide Y (NPY) signaling in the brain plays an important role in energy regulation, and is altered during diet-induced obesity. Yet, NPY function during the consumption of specific diet components remains to be fully determined. We have previously demonstrated that consumption of a saturated fat component (free-choice high-fat; fcHF), a sucrose solution (high-sugar; fcHS), or both (fcHFHS) combined with a standard diet (chow and water) has diverse effects on Npy expression in the arcuate nucleus and the sensitivity to intraventricular NPY administration. Arcuate NPY neurons project to the lateral hypothalamus (LHA), and NPY administration in the LHA potently promotes chow intake in rats on a standard diet. However, it is currently unclear if short-term consumption of a palatable free-choice diet alters NPY function in the LHA. Therefore, we assessed the effects of intra-LHA NPY administration on intake in rats following one-week consumption of a fcHF, fcHS, or fcHFHS diet.Methods: Male Wistar rats consumed a fcHF, fcHS, fcHFHS, or control (CHOW) diet for one week before NPY (0.3 µg / 0.3 µL) or phosphate-buffered saline (0.3 µL) was administered into the LHA. Intake was measured 2h later. fcHFHS-fed rats were divided into high-fat (fcHFHS-hf) and low-fat (fcHFHS-lf) groups based on differences in basal fat intake.Results: Intra-LHA NPY administration increased chow intake in fcHFHS- (irrespective of basal fat intake), fcHF- and CHOW-fed rats. Intra-LHA NPY infusion increased fat intake in fcHF-, fcHFHS-hf, but not fcHFHS-lf, rats. Intra-LHA NPY infusion did not increase caloric intake in fcHS-fed rats.Discussion: Our data demonstrate that the effects of intra-LHA NPY on caloric intake differ depending on the consumption of a fat or sugar component, or both, in a free-choice diet. Our data also indicate that baseline preference for the fat diet component modulates the effects of intra-LHA NPY in fcHFHS-fed rats.


Asunto(s)
Área Hipotalámica Lateral , Neuropéptido Y , Animales , Dieta Alta en Grasa , Área Hipotalámica Lateral/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropéptido Y/metabolismo , Ratas , Ratas Wistar , Sacarosa
6.
Neurobiol Stress ; 15: 100410, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34926732

RESUMEN

BACKGROUND: Social stress is an important environmental risk factor for the development of psychiatric disorders, including depression and anxiety disorders. Social stress paradigms are commonly used in rats and mice to gain insight into the pathogenesis of these disorders. The social instability stress (SIS) paradigm entails frequent (up to several times a week) introduction of one or multiple unfamiliar same-sex home-cage partners. The subsequent recurring formation of a new social hierarchy results in chronic and unpredictable physical and social stress. PURPOSE: We compare and discuss the stress-related behavioral and physiological impact of SIS protocols in rat and mouse, and address limitations due to protocol variability. We further provide practical recommendations to optimize reproducibility of SIS protocols. METHODS: We conducted a systematic review in accordance with the PRISMA statement in the following three databases: PubMed, Web of Science and Scopus. Our search strategy was not restricted to year of publication but was limited to articles in English that were published in peer-reviewed journals. Search terms included "social* instab*" AND ("animal" OR "rodent" OR "rat*" OR "mice" OR "mouse"). RESULTS: Thirty-three studies met our inclusion criteria. Fifteen articles used a SIS protocol in which the composition of two cage mates is altered daily for sixteen days (SIS16D). Eleven articles used a SIS protocol in which the composition of four cage mates is altered twice per week for 49 days (SIS49D). The remaining seven studies used SIS protocols that differed from these two protocols in experiment duration or cage mate quantity. Behavioral impact of SIS was primarily assessed by quantifying depressive-like, anxiety-like, social-, and cognitive behavior. Physiological impact of SIS was primarily assessed using metabolic parameters, hypothalamus-pituitary-adrenal axis activity, and the assessment of neurobiological parameters such as neuroplasticity and neurogenesis. CONCLUSION: Both shorter and longer SIS protocols induce a wide range of stress-related behavioral and physiological impairments that are relevant for the pathophysiology of depression and anxiety disorders. To date, SIS16D has only been reported in rats, whereas SIS49D has only been reported in mice. Given this species-specific application as well as variability in reported SIS protocols, additional studies should determine whether SIS effects are protocol duration- or species-specific. We address several issues, including a lack of consistency in the used SIS protocols, and suggest practical, concrete improvements in design and reporting of SIS protocols to increase standardization and reproducibility of this etiologically relevant preclinical model of social stress.

8.
Appetite ; 167: 105597, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34273421

RESUMEN

Central dopamine signaling regulates reward-related aspects of feeding behavior, and during diet-induced obesity dopamine receptor signaling is altered. Yet, the influence of dopamine signaling on the consumption of specific dietary components remains to be elucidated. We have previously shown that 6-hydroxydopamine-mediated lesions of dopamine neuron terminals in the lateral shell of the nucleus accumbens promotes fat intake in rats fed a multi-component free-choice high-fat high-sugar (fcHFHS) diet. It is however not yet determined which dopamine receptors are responsible for this shift towards fat preference. In this study, we assess the effects of D1-or D2 receptor acute inhibition in the lateral shell of the nucleus accumbens on fcHFHS diet consumption. We report that infusion of the D1 receptor antagonist SCH2 3390, but not the D2 receptor antagonist raclopride, promotes dietary fat consumption in male Sprague Dawley rats on a fcHFHS diet during 2 h after infusion. Furthermore, anatomical analysis of infusion sites revealed that the rostral region, but not the caudal region, of the lateral shell of the nucleus accumbens is sensitive to the D1 receptor inhibition effects on fat consumption. Our data highlight a role for D1 receptors in the rostral region of the lateral shell of the nucleus accumbens to control dietary fat consumption.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D1 , Animales , Grasas de la Dieta , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2
9.
Artículo en Inglés | MEDLINE | ID: mdl-32111717

RESUMEN

OBJECTIVE: Poor maternal and paternal environments increase the risk for obesity and diabetes in offspring, whereas maternal and paternal exercise in mice can improve offspring metabolic health. We determined the effects of combined maternal and paternal exercise on offspring health and the effects of parental exercise on offspring pancreas phenotype, a major tissue regulating glucose homeostasis. RESEARCH DESIGN AND METHODS: Breeders were high fat fed and housed±running wheels before breeding (males) and before and during gestation (females). Offspring groups were: both parents sedentary (Sed); maternal exercise only (Mat Ex); paternal exercise only (Pat Ex); and maternal+paternal exercise (Mat+Pat Ex). Offspring were sedentary, chow fed, and studied at weaning, 12, 20 and 52 weeks. RESULTS: While there was no effect of parental exercise on glucose tolerance at younger ages, at 52 weeks, offspring of Mat Ex, Pat Ex and Mat+Pat Ex displayed lower glycemia and improved glucose tolerance. The greatest effects were in offspring from parents that both exercised (Mat+Pat Ex). Offspring from Mat Ex, Pat Ex, and Mat+Pat Ex had decreased beta cell size, whereas islet size and beta cell mass only decreased in Mat+Pat Ex offspring. CONCLUSIONS: Maternal and paternal exercise have additive effects to improve glucose tolerance in offspring as they age, accompanied by changes in the offspring endocrine pancreas. These findings have important implications for the prevention and treatment of type 2 diabetes.


Asunto(s)
Glucemia/análisis , Padre , Homeostasis/fisiología , Células Secretoras de Insulina/metabolismo , Madres , Fenotipo , Condicionamiento Físico Animal/métodos , Animales , Diabetes Mellitus Tipo 2/prevención & control , Dieta Alta en Grasa , Femenino , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Embarazo , Conducta Sedentaria , Destete
10.
Stress ; 22(5): 571-580, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31184537

RESUMEN

The melanocortin-4 receptor (MC4R) facilitates hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stress in male rodents and is a well known to regulator of energy balance. Mutations in the MC4R is the most common monogenic cause of obesity in humans and has been associated with sex-specific effects, but whether stress regulation by the MC4R is sex-dependent, and whether the MC4R facilitates HPA responses to chronic stress, is unknown. We hypothesized that MC4R-signaling contributes to HPA axis dysregulation and metabolic pathophysiology following chronic stress exposure. We measured changes in energy balance, HPA axis tone, and vascular remodeling during chronic variable stress (CVS) in male and female rats with MC4R loss-of-function. Rats were placed into three groups (n = 9-18/genotype/sex) and half of each group was subjected to CVS for 30 days or were non-stressed littermate controls. All rats underwent an acute restraint stress challenge on Day 30. Rats were euthanized on Day 31, adrenals collected for weight, and descending aortas fixed for morphological indices of vascular pathophysiology. We observed a marked interaction between Mc4r genotype and sex for basal HPA axis tone and acute stress responsivity. MC4R loss-of-function blunted both endpoints in males but exaggerated them in females. Contrary to our hypothesis, Mc4r genotype had no effect on either HPA axis responses or metabolic responses to chronic stress. Heightened stress reactivity of females with MC4R mutations suggests a possible mechanism for the sex-dependent effects associated with this mutation in humans and highlights how stress may differentially regulate metabolism in males and females. Lay summary The hypothalamic melanocortin system is an important regulator of energy balance and stress responses. Here, we report a sex-difference in the stress reactivity of rats with a mutation in this system. Our findings highlight how stress may regulate metabolism differently in males and females and may provide insight into sex-differences associated with this mutation in humans.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptor de Melanocortina Tipo 4/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Corticosterona/metabolismo , Femenino , Genotipo , Humanos , Hipotálamo/metabolismo , Masculino , Ratas , Restricción Física , Factores Sexuales
11.
J Neuroendocrinol ; 31(5): e12718, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30958590

RESUMEN

Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.


Asunto(s)
Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ingestión de Energía , Enfermedades Metabólicas/fisiopatología , Obesidad/fisiopatología , Animales , Conducta de Elección , Azúcares de la Dieta/administración & dosificación , Metabolismo Energético , Humanos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Estrés Psicológico
12.
J Comp Neurol ; 527(16): 2659-2674, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950054

RESUMEN

The hypothalamic neuropeptide Y (NPY) circuitry is a key regulator of feeding behavior. NPY also acts in the mesolimbic dopaminergic circuitry, where it can increase motivational aspects of feeding behavior through effects on dopamine output in the nucleus accumbens (NAc) and on neurotransmission in the ventral tegmental area (VTA). Endogenous NPY in the NAc originates from local interneurons and afferent projections from the hypothalamic arcuate nucleus (Arc). However, the origin of endogenous NPY in the VTA is unknown. We determined, in normal-weight male Wistar rats, if the source of VTA NPY is local, and/or whether it is derived from VTA-projecting neurons. Immunocytochemistry, in situ hybridization and RT-qPCR were utilized, when appropriate in combination with colchicine treatment or 24 hr fasting, to assess NPY/Npy expression locally in the VTA. Retrograde tracing using cholera toxin beta (CTB) in the VTA, fluorescent immunocytochemistry and confocal microscopy were used to determine NPY-immunoreactive afferents to the VTA. NPY in the VTA was observed in fibers, but not following colchicine pretreatment. No NPY- or Npy-expressing cell bodies were observed in the VTA. Fasting for 24 hr, which increased Npy expression in the Arc, failed to induce Npy expression in the VTA. Double-labeling with CTB and NPY was observed in the Arc and in the ventrolateral medulla. Thus, VTA NPY originates from the hypothalamic Arc and the ventrolateral medulla of the brainstem in normal-weight male Wistar rats. These afferent connections link hypothalamic and brainstem processing of physiologic state to VTA-driven motivational behavior.


Asunto(s)
Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Neuropéptido Y/metabolismo , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo , Vías Aferentes/citología , Vías Aferentes/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Bulbo Raquídeo/citología , Bulbo Raquídeo/metabolismo , Microscopía Confocal , Técnicas de Trazados de Vías Neuroanatómicas , Proopiomelanocortina/metabolismo , Ratas Wistar
13.
Nat Metab ; 1(2): 291-303, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31032475

RESUMEN

Exercise improves health and well-being across diverse organ systems, and elucidating mechanisms underlying the beneficial effects of exercise can lead to new therapies. Here, we show that transforming growth factor-ß2 (TGF-ß2) is secreted from adipose tissue in response to exercise and improves glucose tolerance in mice. We identify TGF-ß2 as an exercise-induced adipokine in a gene expression analysis of human subcutaneous adipose tissue biopsies after exercise training. In mice, exercise training increases TGF-ß2 in scWAT, serum, and its secretion from fat explants. Transplanting scWAT from exercise-trained wild type mice, but not from adipose tissue-specific Tgfb2-/- mice, into sedentary mice improves glucose tolerance. TGF-ß2 treatment reverses the detrimental metabolic effects of high fat feeding in mice. Lactate, a metabolite released from muscle during exercise, stimulates TGF-ß2 expression in human adipocytes. Administration of the lactate-lowering agent dichloroacetate during exercise training in mice decreases circulating TGF-ß2 levels and reduces exercise-stimulated improvements in glucose tolerance. Thus, exercise training improves systemic metabolism through inter-organ communication with fat via a lactate-TGF-ß2-signaling cycle.


Asunto(s)
Adipoquinas/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Condicionamiento Físico Animal , Factor de Crecimiento Transformador beta2/metabolismo , Tejido Adiposo/metabolismo , Animales , Ratones
14.
Neuropsychopharmacology ; 43(9): 1934-1942, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29875450

RESUMEN

Elucidating mechanisms by which physical exercise promotes resilience, the brain's ability to cope with prolonged stress exposure while maintaining normal psychological functioning, is a major research challenge given the high prevalence of stress-related mental disorders, including major depressive disorder. Chronic voluntary wheel running (VWR), a rodent model that mimics aspects of human physical exercise, induces the transcription factor ΔFosB in the nucleus accumbens (NAc), a key reward-related brain area. ΔFosB expression in NAc modulates stress susceptibility. Here, we explored whether VWR induction of NAc ΔFosB promotes resilience to chronic social defeat stress (CSDS). Male young-adult C57BL/6J mice were single housed for up to 21 d with or without running wheels and then subjected to 10 d of CSDS. Stress-exposed sedentary mice developed a depressive-like state, characterized by anhedonia and social avoidance, whereas stress-exposed mice that had been wheel running showed resilience. Functional inhibition of NAc ΔFosB during VWR, by viral-mediated overexpression of a transcriptionally inactive JunD mutant, reinstated susceptibility to CSDS. Within the NAc, VWR induction of ΔFosB was CREB-dependent, associated with altered dendritic morphology, and medium spiny neuron (MSN) subtype specific in the NAc core and shell subregions. Finally, when mice performed VWR following the onset of CSDS-induced social avoidance, VWR normalized such behavior. These data indicate that VWR promoted resilience to CSDS, and suggest that sustained induction of ΔFosB in the NAc underlies, at least in part, the stress resilience mediated by VWR. These findings provide a potential framework for the development of treatments for stress-associated mental illnesses based on physical exercise.


Asunto(s)
Núcleo Accumbens/metabolismo , Resiliencia Psicológica , Carrera/fisiología , Carrera/psicología , Estrés Psicológico/metabolismo , Anhedonia/fisiología , Animales , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Depresión/metabolismo , Depresión/patología , Dominación-Subordinación , Masculino , Ratones Endogámicos C57BL , Núcleo Accumbens/patología , Conducta Sedentaria , Estrés Psicológico/patología , Transcripción Genética , Volición
15.
J Mol Endocrinol ; 60(3): R77-R95, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29330149

RESUMEN

Acute or chronic exposure to stress can increase the risk to develop major depressive disorder, a severe, recurrent and common psychiatric condition. Depression places an enormous social and financial burden on modern society. Although many depressed patients are treated with antidepressants, their efficacy is only modest, underscoring the necessity to develop clinically effective pharmaceutical or behavioral treatments. Exercise training produces beneficial effects on stress-related mental disorders, indicative of clinical potential. The pro-resilient and antidepressant effects of exercise training have been documented for several decades. Nonetheless, the underlying molecular mechanisms and the brain circuitries involved remain poorly understood. Preclinical investigations using voluntary wheel running, a frequently used rodent model that mimics aspects of human exercise training, have started to shed light on the molecular adaptations, signaling pathways and brain nuclei underlying the beneficial effects of exercise training on stress-related behavior. In this review, I highlight several neurotransmitter systems that are putative mediators of the beneficial effects of exercise training on mental health, and review recent rodent studies that utilized voluntary wheel running to promote our understanding of exercise training-induced central adaptations. Advancements in our mechanistic understanding of how exercise training induces beneficial neuronal adaptations will provide a framework for the development of new strategies to treat stress-associated mental illnesses.


Asunto(s)
Conducta Animal , Depresión/fisiopatología , Condicionamiento Físico Animal , Animales , Modelos Animales de Enfermedad , Neurotransmisores/metabolismo , Roedores , Estrés Fisiológico
16.
Appetite ; 120: 527-535, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28988760

RESUMEN

Consumption of fat and sugar induces hyperphagia and increases the prevalence of obesity and diabetes type 2. Low-grade inflammation in the hypothalamus, a key brain area involved in the regulation of energy homeostasis is shown to blunt signals of satiety after long term high fat diet. The fact that this mechanism can be activated after a few days of hyperphagia before apparent obesity is present led to our hypothesis that hypothalamic inflammation is induced with fat and sugar consumption. Here, we used a free-choice high-fat high-sugar (fcHFHS) diet-induced obesity model and tested the effects of differential overnight nutrient intake during the final experimental night on markers of hypothalamic inflammation. Male Wistar rats were fed a control diet or fcHFHS diet for one week, and assigned to three different feeding conditions during the final experimental night: 1) fcHFHS-fed, 2) fed a controlled amount of chow diet, or 3) fasted. RT-qPCR and Western blot were utilized to measure hypothalamic gene and protein expression, of cytokines and intermediates of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Lastly, we investigated the effects of acute fat intake on markers of hypothalamic inflammation in fat-naïve rats. fcHFHS-fed rats consumed more calories, increased adipose tissue, and showed elevated expression of hypothalamic inflammation markers (increased phosphorylation of NF-κB protein, Nfkbia and Il6 gene expression) compared to chow-fed rats. These effects were evident in rats consuming relative high amounts of fat. Removal of the fat and sugar, or fasting, during the final experimental night ameliorated hypothalamic inflammation. Finally, a positive correlation was observed between overnight acute fat consumption and hypothalamic NF-κB phosphorylation in fat-naïve rats. Our data indicate that one week of fcHFHS diet, and especially the fat component, promotes hypothalamic inflammation, and removal of the fat and sugar component reverses these detrimental effects.


Asunto(s)
Ingestión de Alimentos , Hipotálamo/fisiopatología , Inflamación/fisiopatología , Obesidad/fisiopatología , Adiposidad , Animales , Citocinas/sangre , Citocinas/genética , Dieta Alta en Grasa , Grasas de la Dieta/administración & dosificación , Azúcares de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Privación de Alimentos , Hiperfagia/dietoterapia , Hiperfagia/etiología , Leptina/sangre , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Ratas , Ratas Wistar
17.
Front Neurosci ; 11: 716, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311793

RESUMEN

Glucose-sensing neurons are neurons that alter their activity in response to changes in extracellular glucose. These neurons, which are an important mechanism the brain uses to monitor changes in glycaemia, are present in the hypothalamus, where they have been thoroughly investigated. Recently, glucose-sensing neurons have also been identified in brain nuclei which are part of the reward system. However, little is known about the molecular mechanisms by which they function, and their role in the reward system. We therefore aim to provide an overview of molecular mechanisms that have been studied in the hypothalamic glucose-sensing neurons, and investigate which of these transporters, enzymes and channels are present in the reward system. Furthermore, we speculate about the role of glucose-sensing neurons in the reward system.

18.
Endocrine ; 54(1): 70-80, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27106801

RESUMEN

High-calorie diet (HCD) feeding in mice predisposes offspring for impaired glucose homeostasis and obesity. However, the mechanisms underlying these detrimental effects of maternal nutrition, especially during early life of offspring, are incompletely understood. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate target gene expression. Here we hypothesized that impaired metabolic health in offspring from HCD-fed dams at weaning is associated with dysregulated expression of hepatic miRNAs. Dams were fed a chow diet (CD; 11.4 % kcal fat, 62.8 % from carbohydrate, 25.8 % from protein) or HCD (58 % kcal from fat; 25.6 % from carbohydrate, 16.4 % from protein) during gestation and lactation, and metabolic health was assessed in male offspring at weaning. Hepatic levels of miRNAs and target genes were investigated in offspring from CD- or HCD-fed dams using gene and protein expression. Maternal HCD feeding impaired metabolic health in offspring compared to offspring from CD-fed dams. Microarray analysis indicated that expressions of miR-615-5p, miR-3079-5p, miR-124*, and miR-101b* were downregulated, whereas miR-143* was upregulated, in livers from offspring from HCD-fed dams. Our functional enrichment analysis indicated that the target genes of these differentially expressed miRNAs, including tumor necrosis factor-α (TNF-α) and mitogen-activated protein kinase 1 (MAPK1), were mapped to inflammatory pathways. Finally, we verified that both mRNA and protein levels of the pro-inflammatory modulators TNF-α and MAPK1 were significantly increased in livers of offspring from HCD-fed dams at weaning. Maternal HCD feeding predisposes offspring to a higher body weight and impaired glucose metabolism at weaning. To the best of knowledge, our study is the first to show that maternal HCD consumption impairs metabolic health, modulates hepatic miRNA expression, and increases markers of hepatic inflammation in offspring as early as at weaning age.


Asunto(s)
Ingestión de Energía/fisiología , Hígado/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , MicroARNs/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa , Femenino , Glucosa/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , Masculino , Ratones , MicroARNs/genética , Embarazo , Destete
19.
eNeuro ; 3(6)2016.
Artículo en Inglés | MEDLINE | ID: mdl-28058270

RESUMEN

The development of animal models with construct, face, and predictive validity to accurately model human depression has been a major challenge. One proposed rodent model is the 5 d repeated forced swim stress (5d-RFSS) paradigm, which progressively increases floating during individual swim sessions. The onset and persistence of this floating behavior has been anthropomorphically characterized as a measure of depression. This interpretation has been under debate because a progressive increase in floating over time may reflect an adaptive learned behavioral response promoting survival, and not depression (Molendijk and de Kloet, 2015). To assess construct and face validity, we applied 5d-RFSS to C57BL/6J and BALB/cJ mice, two mouse strains commonly used in neuropsychiatric research, and measured a combination of emotional, homeostatic, and psychomotor symptoms indicative of a depressive-like state. We also compared the efficacy of 5d-RFSS and chronic social defeat stress (CSDS), a validated depression model, to induce a depressive-like state in C57BL/6J mice. In both strains, 5d-RFSS progressively increased floating behavior that persisted for at least 4 weeks. 5d-RFSS did not alter sucrose preference, body weight, appetite, locomotor activity, anxiety-like behavior, or immobility behavior during a tail-suspension test compared with nonstressed controls. In contrast, CSDS altered several of these parameters, suggesting a depressive-like state. Finally, predictive validity was assessed using voluntary wheel running (VWR), a known antidepressant intervention. Four weeks of VWR after 5d-RFSS normalized floating behavior toward nonstressed levels. These observations suggest that 5d-RFSS has no construct or face validity but might have predictive validity to model human depression.


Asunto(s)
Trastorno Depresivo , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Natación , Anhedonia , Animales , Ansiedad , Peso Corporal , Trastorno Depresivo/etiología , Trastorno Depresivo/fisiopatología , Sacarosa en la Dieta , Dominación-Subordinación , Preferencias Alimentarias , Masculino , Actividad Motora , Especificidad de la Especie , Estrés Psicológico/complicaciones
20.
Physiol Rep ; 3(11)2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26564060

RESUMEN

Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...