Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203007

RESUMEN

Antimicrobial resistance has emerged as a significant danger to global health, and the need for more effective antimicrobial resistance (AMR) control has been highlighted. Cinnamic acid is abundant in plant products and is a potential starting material for further modification, focusing on the development of new antimicrobial compounds. In the following review, we describe the classification of critical antibacterial-guided reactions applied to the main skeleton structure of cinnamic acid derivatives over the last decade. Of all of the main parts of cinnamic acids, the phenyl ring and the carboxylic group significantly affect antibacterial activity. The results presented in the following review can provide valuable insights into considerable features in the organic modification of cinnamic acids related to antibacterial medication development and the food industry.


Asunto(s)
Antibacterianos , Cinamatos , Cinamatos/química , Cinamatos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Estructura Molecular , Bacterias/efectos de los fármacos , Humanos
2.
ACS Appl Mater Interfaces ; 16(14): 17253-17266, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557012

RESUMEN

Extending molecular imaging into the shortwave-infrared (SWIR, 900-1400 nm) region provides deep tissue visualization of biomolecules in the living system resulting from the low tissue autofluorescence and scattering. Looking at the Food and Drug Administration-approved and clinical trial near-infrared (NIR) probes, only indocyanine green (ICG) and its analogues have been approved for biomedical applications. Excitation wavelength less than 800 nm limits these probes from deep tissue penetration and noninvasive fluorescence imaging. Herein, we present the synthesis of ICG-based π-conjugation-extended cyanine dyes, ICG-C9 and ICG-C11 as biocompatible, and water-soluble SWIR-emitting probes with emission wavelengths of 922 and 1010 nm in water, respectively. Also, ICG-, ICG-C9-, and ICG-C11-based fluorescent labeling agents have been synthesized for the development of SWIR molecular imaging probes. Using the fluorescence of ICG, ICG-C9, and ICG-C11, we demonstrate three-color SWIR fluorescence imaging of breast tumors by visualizing surface receptors (EGFR and HER2) and tumor vasculature in living mice. Furthermore, we demonstrate two-color SWIR fluorescence imaging of breast tumor apoptosis using an ICG-conjugated anticancer drug, Kadcyla and ICG-C9 or ICG-C11-conjugated annexin V. Finally, we show long-term (38 days) SWIR fluorescence imaging of breast tumor shrinkage induced by Kadcyla. This study provides a general strategy for multiplexed fluorescence molecular imaging with biocompatible and water-soluble SWIR-emitting cyanine probes.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Animales , Ratones , Humanos , Femenino , Ado-Trastuzumab Emtansina , Verde de Indocianina , Imagen Molecular , Imagen Óptica/métodos , Neoplasias de la Mama/diagnóstico por imagen
3.
Artículo en Inglés | MEDLINE | ID: mdl-38490250

RESUMEN

OBJECTIVES: Our goal was to evaluate early and mid-term outcomes of physician-modified endografting for pararenal and thoraco-abdominal aortic aneurysms from 10 Japanese aortic centres. METHODS: From January 2012 to March 2022, a total of 121 consecutive adult patients who underwent physician-modified endografting for pararenal and thoraco-abdominal aortic aneurysms were enrolled. We analysed early and mid-term postoperative outcomes, including postoperative complications and mortality. RESULTS: The pararenal and thoraco-abdominal aortic aneurysm groups included 62 (51.2%) and 59 (48.8%) patients, respectively. The overall in-hospital mortality rate was 5.8% (n = 7), with mortality rates of 3.2% (n = 2) and 8.5% (n = 5) in pararenal and thoraco-abdominal aortic aneurysm groups, respectively (P = 0.225). Type IIIc endoleaks occurred postoperatively in 18 patients (14.9%), with a significantly higher incidence (P = 0.033) in the thoraco-abdominal aortic aneurysm group (22.0%, n = 13) than in the other group (8.1%, n = 5). Major adverse events occurred in 7 (11.3%) and 14 (23.7%) patients in pararenal and thoraco-abdominal aortic aneurysm groups (P = 0.074), respectively. The mean follow-up period was 24.2 months. At the 3-year mark, both groups differed significantly in freedom from all-cause mortality (83.3% and 54.1%, P = 0.004), target aneurysm-related mortality (96.8% and 82.7%, P = 0.013) and any reintervention (89.3% and 65.6%, P = 0.002). Univariate and multivariate regression analyses demonstrated that ruptures, thoraco-abdominal aortic aneurysms and postoperative type IIIc endoleaks were associated with an increased risk of all-cause mortality. CONCLUSIONS: The mid-term outcomes of physician-modified endografting for pararenal and thoraco-abdominal aortic aneurysms were clinically acceptable and comparable with those in other recently published studies. Notably, pararenal and thoraco-abdominal aortic aneurysms represent distinct pathological entities with different postoperative outcomes.

4.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325740

RESUMEN

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Asunto(s)
Serina C-Palmitoiltransferasa , Serina , Sphingobacterium , Dominio Catalítico , Cristalización , Medición de Intercambio de Deuterio , Electrones , Hidrógeno/metabolismo , Palmitoil Coenzima A/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina C-Palmitoiltransferasa/química , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/enzimología , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/biosíntesis , Esfingosina/metabolismo , Estereoisomerismo , Especificidad por Sustrato
5.
ACS Med Chem Lett ; 14(9): 1237-1241, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37736188

RESUMEN

GM3 is a simple monosialylated ganglioside (NeuAcα(2-3)Galß(1-4)Glcß1-1'-ceramide). Its aberrant expression in adipocytes is involved in a variety of physiological and pathological processes in diabetes mellitus and obesity. GM3 is exposed on the outer surface of cell membranes and is strongly associated with type 2 diabetes and insulin resistance. Exogenously added GM3 promotes neurite outgrowth in a variety of different neuroblastoma cell lines. Neurite outgrowth is a key process in the development of functional neuronal circuits and neuro-regeneration following nerve injury. Therefore, regulating GM3 levels in nerve tissues might be a potential treatment method for these disorders. Here, we demonstrate the comprehensive synthesis of stereoisomeric GM3s and compare their physicochemical properties with those of natural GM3 and diastereomers of sphingolipids in GM3 to examine the enhancement of biological activity. l-erythro-GM3 was confirmed to increase neurite outgrowth, providing valuable insights for potential neuro-regenerative treatments.

6.
Biosci Biotechnol Biochem ; 87(10): 1129-1138, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37528065

RESUMEN

Squalene is a triterpenoid compound and widely used in various industries such as medicine and cosmetics due to its strong antioxidant and anticancer properties. The purpose of this study is to increase the accumulation of squalene in filamentous fungi using exogeneous butenafine hydrochloride, which is an inhibitor for squalene epoxidase. The detailed settings achieved that the filamentous fungi, Trichoderma virens PS1-7, produced squalene up to 429.93 ± 51.60 mg/L after culturing for 7 days in the medium consisting of potato infusion with glucose at pH 4.0, in the presence of 200 µm butenafine. On the other hand, no squalene accumulation was observed without butenafine. This result indicated that squalene was biosynthesized in the filamentous fungi PS1-7, which can be used as a novel source of squalene. In addition, we successfully obtained highly 13C-enriched squalene by using [U-13C6]-glucose as a carbon source replacing normal glucose.


Asunto(s)
Hypocrea , Trichoderma , Escualeno-Monooxigenasa , Isótopos de Carbono , Escualeno , Hongos , Glucosa
7.
Microbiol Spectr ; 11(4): e0003623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37367297

RESUMEN

Strains of the Ralstonia solanacearum species complex (RSSC), although known as the causative agent of bacterial wilt disease in plants, induce the chlamydospores of many fungal species and invade them through the spores. The lipopeptide ralstonins are the chlamydospore inducers produced by RSSC and are essential for this invasion. However, no mechanistic investigation of this interaction has been conducted. In this study, we report that quorum sensing (QS), which is a bacterial cell-cell communication, is important for RSSC to invade the fungus Fusarium oxysporum (Fo). ΔphcB, a deletion mutant of QS signal synthase, lost the ability to both produce ralstonins and invade Fo chlamydospores. The QS signal methyl 3-hydroxymyristate rescued these disabilities. In contrast, exogenous ralstonin A, while inducing Fo chlamydospores, failed to rescue the invasive ability. Gene-deletion and -complementation experiments revealed that the QS-dependent production of extracellular polysaccharide I (EPS I) is essential for this invasion. The RSSC cells adhered to Fo hyphae and formed biofilms there before inducing chlamydospores. This biofilm formation was not observed in the EPS I- or ralstonin-deficient mutant. Microscopic analysis showed that RSSC infection resulted in the death of Fo chlamydospores. Altogether, we report that the RSSC QS system is important for this lethal endoparasitism. Among the factors regulated by the QS system, ralstonins, EPS I, and biofilm are important parasitic factors. IMPORTANCE Ralstonia solanacearum species complex (RSSC) strains infect both plants and fungi. The phc quorum-sensing (QS) system of RSSC is important for parasitism on plants, because it allows them to invade and proliferate within the hosts by causing appropriate activation of the system at each infection step. In this study, we confirm that ralstonin A is important not only for Fusarium oxysporum (Fo) chlamydospore induction but also for RSSC biofilm formation on Fo hyphae. Extracellular polysaccharide I (EPS I) is also essential for biofilm formation, while the phc QS system controls these factors in terms of production. The present results advocate a new QS-dependent mechanism for the process by which a bacterium invades a fungus.


Asunto(s)
Fusarium , Ralstonia solanacearum , Percepción de Quorum/fisiología , Ralstonia solanacearum/fisiología , Biopelículas , Plantas
8.
Chirality ; 35(9): 577-585, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37055029

RESUMEN

Stereochemistry has a substantial impact on the biological activity of various drugs. We investigated the role of stereochemistry of ceramides in inducing the production of exosomes, a type of extracellular vesicle, from neuronal cells, with a potential benefit in improving the clearance of amyloid-ß (Aß), a causal agent of Alzheimer's disease. A stereochemical library of diverse ceramides with different tail lengths was synthesized with the purpose of varying stereochemistry (D-erythro: DE, D-threo: DT, L-erythro: LE, L-threo: LT) and hydrophobic tail length (C6, C16, C18, C24). The exosome levels were quantified using TIM4-based exosome enzyme-linked immunosorbent assay after concentrating the conditioned medium using centrifugal filter devices. The results revealed a pivotal role of stereochemistry in determining the biological activity of ceramide stereoisomers, with the superiority of those based on DE and DT stereochemistry with C16 and C18 tails, which demonstrated significantly higher exosome production, without a significant change in the particle size of the released exosomes. In transwell experiments with Aß-expressed neuronal and microglial cells, DE- and DT-ceramides with C16 and C18 tails significantly decreased extracellular Aß levels. The results reported here are promising in the design of non-classic therapies for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Ceramidas , Estereoisomerismo , Péptidos beta-Amiloides
9.
J Biol Chem ; 299(5): 104684, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030501

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Asunto(s)
Serina C-Palmitoiltransferasa , Sphingobacterium , Humanos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Serina/química , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/enzimología , Esfingolípidos/metabolismo , Especificidad por Sustrato
10.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771073

RESUMEN

In materials (polymer) science and medicinal chemistry, heteroaromatic derivatives play the role of the central skeleton in development of novel devices and discovery of new drugs. On the other hand, (3-trifluoromethyl)phenyldiazirine (TPD) is a crucial chemical method for understanding biological processes such as ligand-receptor, nucleic acid-protein, lipid-protein, and protein-protein interactions. In particular, use of TPD has increased in recent materials science to create novel electric and polymer devices with comparative ease and reduced costs. Therefore, a combination of heteroaromatics and (3-trifluoromethyl)diazirine is a promising option for creating better materials and elucidating the unknown mechanisms of action of bioactive heteroaromatic compounds. In this review, a comprehensive synthesis of (3-trifluoromethyl)diazirine-substituted heteroaromatics is described.


Asunto(s)
Ácidos Nucleicos , Etiquetas de Fotoafinidad , Etiquetas de Fotoafinidad/química , Diazometano/química , Química Farmacéutica , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA