Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(15): 13423-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21345803

RESUMEN

The ATPase activity of chloroplast and bacterial F(1)-ATPase is strongly inhibited by both the endogenous inhibitor ε and tightly bound ADP. Although the physiological significance of these inhibitory mechanisms is not very well known for the membrane-bound F(0)F(1), these are very likely to be important in avoiding the futile ATP hydrolysis reaction and ensuring efficient ATP synthesis in vivo. In a previous study using the α(3)ß(3)γ complex of F(1) obtained from the thermophilic cyanobacteria, Thermosynechococcus elongatus BP-1, we succeeded in determining the discrete stop position, ∼80° forward from the pause position for ATP binding, caused by ε-induced inhibition (ε-inhibition) during γ rotation (Konno, H., Murakami-Fuse, T., Fujii, F., Koyama, F., Ueoka-Nakanishi, H., Pack, C. G., Kinjo, M., and Hisabori, T. (2006) EMBO J. 25, 4596-4604). Because γ in ADP-inhibited F(1) also pauses at the same position, ADP-induced inhibition (ADP-inhibition) was assumed to be linked to ε-inhibition. However, ADP-inhibition and ε-inhibition should be independent phenomena from each other because the ATPase core complex, α(3)ß(3)γ, also lapses into the ADP-inhibition state. By way of thorough biophysical and biochemical analyses, we determined that the ε subunit inhibition mechanism does not directly correlate with ADP-inhibition. We suggest here that the cyanobacterial ATP synthase ε subunit carries out an important regulatory role in acting as an independent "braking system" for the physiologically unfavorable ATP hydrolysis reaction.


Asunto(s)
Adenosina Difosfato/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Cianobacterias/enzimología , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cianobacterias/genética , Hidrólisis , ATPasas de Translocación de Protón/genética
2.
Biochem J ; 425(1): 85-94, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19785575

RESUMEN

The epsilon subunit, a small subunit located in the F1 domain of ATP synthase and comprising two distinct domains, an N-terminal beta-sandwich structure and a C-terminal alpha-helical region, serves as an intrinsic inhibitor of ATP hydrolysis activity. This inhibitory function is especially important in photosynthetic organisms as the enzyme cannot synthesize ATP in the dark, but may catalyse futile ATP hydrolysis reactions. To understand the structure-function relationship of this subunit in F1 from photosynthetic organisms, we solved the NMR structure of the epsilon subunit of ATP synthase obtained from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, and examined the flexibility of the C-terminal domains using molecular dynamics simulations. In addition, we revealed the significance of the C-terminal alpha-helical region of the epsilon subunit in determining the binding affinity to the complex based on the assessment of the inhibition of ATPase activity by the cyanobacterial epsilon subunit and the chimaeric subunits composed of the N-terminal domain from the cyanobacterium and the C-terminal domain from spinach. The differences observed in the structural and biochemical properties of chloroplast and bacterial epsilon subunits explains the distinctive characteristics of the epsilon subunits in the ATPase complex of the photosynthetic organism.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Cianobacterias/genética , Cianobacterias/metabolismo , Hidrólisis , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/genética , Relación Estructura-Actividad
3.
EMBO J ; 25(19): 4596-604, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16977308

RESUMEN

The chloroplast-type F(1) ATPase is the key enzyme of energy conversion in chloroplasts, and is regulated by the endogenous inhibitor epsilon, tightly bound ADP, the membrane potential and the redox state of the gamma subunit. In order to understand the molecular mechanism of epsilon inhibition, we constructed an expression system for the alpha(3)beta(3)gamma subcomplex in thermophilic cyanobacteria allowing thorough investigation of epsilon inhibition. epsilon Inhibition was found to be ATP-independent, and different to that observed for bacterial F(1)-ATPase. The role of the additional region on the gamma subunit of chloroplast-type F(1)-ATPase in epsilon inhibition was also determined. By single molecule rotation analysis, we succeeded in assigning the pausing angular position of gamma in epsilon inhibition, which was found to be identical to that observed for ATP hydrolysis, product release and ADP inhibition, but distinctly different from the waiting position for ATP binding. These results suggest that the epsilon subunit of chloroplast-type ATP synthase plays an important regulator for the rotary motor enzyme, thus preventing wasteful ATP hydrolysis.


Asunto(s)
Cianobacterias/enzimología , Proteínas Motoras Moleculares/metabolismo , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Dimetilaminas/farmacología , Hidrólisis/efectos de los fármacos , Proteínas Motoras Moleculares/antagonistas & inhibidores , Proteínas Motoras Moleculares/química , Proteínas Mutantes/metabolismo , Unión Proteica , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...