RESUMEN
Invited for this month's cover are the collaborating groups of Dr. Margarita Suárez at Universidad de La Habana, Cuba, and Dr. Nazario Martín at Universidad Complutense de Madrid, Spain, together with groups at other institutions worldwide. The Front Cover shows a representation of the H2 @C60 hybrid molecule with a dehydroepiandrosterone moiety interacting with the active site of the SARS Cov-2. Read the full text of the article at 10.1002/cplu.202000770.
RESUMEN
We report the synthesis and characterization of a fullerene-steroid hybrid that contains H2 @C60 and a dehydroepiandrosterone moiety synthesized by a cyclopropanation reaction with 76 % yield. Theoretical calculations at the DFT-D3(BJ)/PBE 6-311G(d,p) level predict the most stable conformation and that the saturation of a double bond is the main factor causing the upfield shielding of the signal appearing at -3.13â ppm, which corresponds to the H2 located inside the fullerene cage. Relevant stereoelectronic parameters were also investigated and reinforce the idea that electronic interactions must be considered to develop studies on chemical-biological interactions. A molecular docking simulation predicted that the binding energy values for the protease-hybrid complexes were -9.9 kcal/mol and -13.5 kcal/mol for PLpro and 3CLpro respectively, indicating the potential use of the synthesized steroid-H2 @C60 as anti-SARS-Cov-2 agent.