Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
FEBS Lett ; 587(10): 1579-86, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23587483

RESUMEN

Both radiotherapy and most effective chemotherapeutic agents induce different types of DNA damage. Here we show that tungstate modulates cell response to DNA damaging agents. Cells treated with tungstate were more sensitive to etoposide, phleomycin and ionizing radiation (IR), all of which induce DNA double-strand breaks (DSBs). Tungstate also modulated the activation of the central DSB signalling kinase, ATM, in response to these agents. These effects required the functionality of the Mre11-Nbs1-Rad50 (MRN) complex and were mimicked by the inhibition of PP2A phosphatase. Therefore, tungstate may have adjuvant activity when combined with DNA-damaging agents in the treatment of several malignancies.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Compuestos de Tungsteno/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Dosis de Radiación , Radiación Ionizante , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Proteínas Supresoras de Tumor/metabolismo
2.
FEBS Lett ; 586(3): 270-6, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22245679

RESUMEN

Tungstate counteracts diabetes and obesity in animal models, but its molecular mechanisms remain elusive. Our Saccharomyces cerevisiae-based approach has found that tungstate alleviated the growth defect induced by nutrient stress and enhanced the activation of the GCN pathway. Tungstate relieved the sensitivity to starvation of a gcn2-507 yeast hypomorphic mutant, indicating that tungstate modulated the GCN pathway downstream of Gcn2p. Interestingly, tungstate inhibited Glc7p and PP1 phosphatase activity, both negative regulators of the GCN pathway in yeast and humans, respectively. Accordingly, overexpression of a dominant-negative Glc7p mutant in yeast mimicked tungstate effects. Therefore tungstate alleviates nutrient stress in yeast by in vivo inhibition of Glc7p. These data uncover a potential role for tungstate in the treatment of PP1 and GCN related diseases.


Asunto(s)
Fármacos Antiobesidad/farmacología , Antineoplásicos/farmacología , Hipoglucemiantes/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Compuestos de Tungsteno/farmacología , Aminoácidos/deficiencia , Sinergismo Farmacológico , Alimentos , Humanos , Mutación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Tacrolimus/farmacología , Triazoles/química , Triazoles/farmacología
3.
Cancer Lett ; 273(2): 281-91, 2009 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18818012

RESUMEN

Radio and chemotherapy are the election options besides surgical resection, in cancer treatment. However, resistance to chemotherapy limits the effectiveness of therapy in the clinic. An improved knowledge of the mechanisms underlying the resistance to treatment would generate new therapeutic strategies. Genetic suppressor elements (GSEs) are short, biologically active, cDNA fragments that interfere with the function of their cognate gene. By selection of genetic suppressor elements (GSEs) conferring resistance to cisplatin, we identified the GSE11, that corresponds to the hCCR4/CNOT6 gene that mediates cellular sensitivity to the drug. Expression of GSE11-hCCR4 reduces hCCR4 protein levels in cells. Targeting hCCR4 with GSE11 or with siRNA, decreases sensitivity of mammalian cells to DNA-damaging agents. Overexpression of hCCR4 targets Chk2 following exposure to cisplatin, without interfering with the upstream ATM/ATR pathway, however histone gammaH2AX is strongly phosphorylated in these cells compared to control cells. Our results uncover a new function for a human protein involved in chemotherapy response. This finding introduces a new pharmacological target in the treatment of solid tumours.


Asunto(s)
Daño del ADN , Exorribonucleasas/metabolismo , Histonas/genética , Animales , Antineoplásicos/farmacología , Supervivencia Celular , Cisplatino/farmacología , Exorribonucleasas/genética , Biblioteca de Genes , Humanos , Ratones , Microscopía Fluorescente , Fosforilación , ARN Interferente Pequeño/metabolismo , Elementos de Respuesta
4.
Clin Transl Oncol ; 9(4): 221-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17462974

RESUMEN

The budding yeast Saccharomyces cerevisiae is being widely used as a model for investigating fundamental processes relevant to all living organisms. Many of these processes are affected by genetic and epigenetic alterations in cancer such as cell cycle progression, DNA replication and segregation, maintenance of genomic integrity and stress responses. Therefore, yeast emerges as an attractive model for anticancer drug research. The genetic tractability of budding yeast, its ease of manipulation and the wealth of functional genomics tools available in this organism makes it ideal for genome-wide analysis of biological functions and chemical screenings. The present review will discuss some of the innovative advantages based on yeast genetics and genomics for antitumour drug target identification and drug discovery.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Antineoplásicos/farmacología , ADN Complementario/genética , Farmacorresistencia Fúngica , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Investigación Genética , Genómica/métodos , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica/métodos
5.
Clin. transl. oncol. (Print) ; 9(4): 221-228, abr. 2007. ilus
Artículo en Inglés | IBECS | ID: ibc-123296

RESUMEN

The budding yeast Saccharomyces cerevisiae is being widely used as a model for investigating fundamental processes relevant to all living organisms. Many of these processes are affected by genetic and epigenetic alterations in cancer such as cell cycle progression, DNA replication and segregation, maintenance of genomic integrity and stress responses. Therefore, yeast emerges as an attractive model for anticancer drug research. The genetic tractability of budding yeast, its ease of manipulation and the wealth of functional genomics tools available in this organism makes it ideal for genome-wide analysis of biological functions and chemical screenings. The present review will discuss some of the innovative advantages based on yeast genetics and genomics for antitumour drug target identification and drug discovery (AU)


Asunto(s)
Humanos , Masculino , Femenino , Antineoplásicos/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos de Selección de Medicamentos Antitumorales , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , ADN Complementario/genética , Farmacorresistencia Fúngica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteómica/métodos
6.
Cell Mol Life Sci ; 61(6): 700-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15052412

RESUMEN

The immunosuppressants tacrolimus (FK506) and cyclosporin A (CsA) have increased the survival rates in organ transplantation. Both drugs inhibit the protein phosphatase calcineurin (CaN) in activated T cells, exhibiting similar side-effects. Diabetes is observed more often in FK506 than CsA therapy, probably due to inhibition of new molecular targets other than CaN. We studied FK506 toxicity in mammalian cells. FK506, but not CsA, regulated p38 activation by osmotic stress, and decreased viability in osmostressed cells. In addition, FK506 treatment strongly increased the phosphorylation of the eukaryotic initiation factor-2alpha (eIF-2alpha) subunit. eIF-2alpha phosphorylation, p38 inhibition and cell lethality were relieved by addition of excess amino acids to the medium, suggesting that amino acid availability mediated FK506 toxicity. Therefore, these FK506-dependent responses could be relevant to the non-therapeutic effects of FK506 therapy.


Asunto(s)
Inmunosupresores/farmacología , Riñón/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Tacrolimus/farmacología , Calcineurina/metabolismo , Calcineurina/farmacología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Ciclosporina/farmacología , Activación Enzimática , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Riñón/citología , Riñón/enzimología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Concentración Osmolar , Fosforilación/efectos de los fármacos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Sorbitol/farmacología , Triptófano/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
7.
J Nat Prod ; 66(5): 722-4, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12762819

RESUMEN

The aerial parts of Nanodea muscosa, collected in Chile, yielded two new acetylenic acids. Their structures were elucidated by spectroscopic analyses, including 2D NMR techniques, as (13E)-octadec-13-en-11-ynoic acid (1) and (2E)-octadec-2-en-4-ynedioic acid (2). Compound 2 constitutes the first example of a conjugated ene-yne fatty diacid isolated from a natural source. Compounds 1 and 2 did not exhibit toxicity toward a panel of DNA damage checkpoint defective yeast mutants or show affinity for the 5-HT(1A), 5-HT(2A), D(2), and H(1) receptors.


Asunto(s)
Ácidos Grasos Insaturados/aislamiento & purificación , Santalaceae/química , Alquinos , Chile , Daño del ADN/efectos de los fármacos , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/farmacología , Estructura Molecular , Receptor de Serotonina 5-HT2A , Receptores de Dopamina D2/efectos de los fármacos , Receptores Histamínicos H1/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Receptores de Serotonina 5-HT1 , Saccharomyces cerevisiae/efectos de los fármacos , Estereoisomerismo
8.
Curr Opin Genet Dev ; 10(1): 17-25, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10679395

RESUMEN

DNA damage or stalled DNA replication can activate specific signal transduction pathways, termed checkpoints. Checkpoint activation can result in increased repair, induction of a transcriptional programme and inhibition of cell-cycle progression. Recent results have suggested possible mechanisms for the detection of specific DNA structures, provided further information on the organisation of the signal transduction cascade and demonstrated involvement of the checkpoint pathway in DNA repair.


Asunto(s)
Daño del ADN , Genes cdc , Transducción de Señal , Animales , Apoptosis , Ciclo Celular , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN , Humanos , Levaduras
9.
Genes Dev ; 12(16): 2560-73, 1998 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-9716408

RESUMEN

Preventing or delaying progress through the cell cycle in response to DNA damage is crucial for eukaryotic cells to allow the damage to be repaired and not incorporated irrevocably into daughter cells. Several genes involved in this process have been discovered in fission and budding yeast. Here, we report the identification of human and mouse homologs of the Schizosaccharomyces pombe DNA damage checkpoint control gene rad1(+) and its Saccharomyces cerevisiae homolog RAD17. The human gene HRAD1 is located on chromosome 5p13 and is most homologous to S. pombe rad1(+). This gene encodes a 382-amino-acid residue protein that is localized mainly in the nucleus and is expressed at high levels in proliferative tissues. This human gene significantly complements the sensitivity to UV light of a S. pombe strain mutated in rad1(+). Moreover, HRAD1 complements the checkpoint control defect of this strain after UV exposure. In addition to functioning in DNA repair checkpoints, S. cerevisiae RAD17 plays a role during meiosis to prevent progress through prophase I when recombination is interrupted. Consistent with a similar role in mammals, Rad1 protein is abundant in testis, and is associated with both synapsed and unsynapsed chromosomes during meiotic prophase I of spermatogenesis, with a staining pattern distinct from that of the recombination proteins Rad51 and Dmc1. Together, these data imply an important role for hRad1 both in the mitotic DNA damage checkpoint and in meiotic checkpoint mechanisms, and suggest that these events are highly conserved from yeast to humans.


Asunto(s)
Proteínas de Unión al ADN , Exonucleasas/fisiología , Meiosis/fisiología , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/química , Núcleo Celular/metabolismo , Mapeo Cromosómico , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN , Endonucleasas/química , Proteínas Fúngicas/química , Expresión Génica , Prueba de Complementación Genética , Células HeLa , Humanos , Masculino , Meiosis/genética , Ratones , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares , Profase , Ratas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe , Homología de Secuencia de Aminoácido , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/citología , Testículo/fisiología , Regulación hacia Arriba
10.
Oncogene ; 16(4): 533-40, 1998 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-9484843

RESUMEN

Genotoxic stress triggers signalling pathways that either mediate cell killing or protection of affected cells. While induction of p53 is observed for most of the genotoxins, activation of MAPK/SAPK cascades is not a general response. The role of MAPK/SAPK activation on cell fate, seems to be dependent, in some systems, on the balanced response among both cascades. We have here examined the effect of cis and trans-DDP on the activation of ERK and JNK activities. While no significant induction of ERK was observed with the compounds, both of them are able to strongly activate JNK. Trans-DDP response is rapid and transient while the cis-DDP one is slow and persistent. In contrast with the observed nuclear translocation of JNK in response to U.V. light, none of the platinum compounds induces translocation, on the contrary, activation of JNK occurs in both the nuclear and cytoplasmic compartments. Inhibition of tyrosine phosphatases by orthovanadate pretreatment prolongs the time of JNK induction in response to both platinum compounds. The positive modulation of JNK activation correlates with an increase in toxicity that, for cis-DDP corresponds to a tenfold decrease in the IC50. A strong increase in MKP-1 levels was observed only in response to trans-DDP suggesting the involvement of this activity in the downregulation of JNK activity in response to this compound. Altogether the results suggest that the prolonged activation of JNK in response to cis-DDP contributes to cell death induction.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Cisplatino/farmacología , Daño del ADN , Proteínas Quinasas Activadas por Mitógenos , Animales , Línea Celular/efectos de los fármacos , Línea Celular/enzimología , Núcleo Celular/enzimología , Citoplasma/enzimología , Activación Enzimática/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Vanadatos/farmacología
11.
J Biol Chem ; 271(46): 29029-33, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8910555

RESUMEN

The yeast halotolerance gene HAL2 encodes a nucleotidase that dephosphorylates 3'-phosphoadenosine 5'-phosphate (PAP) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS), intermediates of the sulfate assimilation pathway. This nucleotidase is inhibited by Na+ and Li+ but not by K+. Incubation of wild-type yeast cells with NaCl and LiCl, but not with KCl, increased intracellular PAP to millimolar concentrations. No depletion of the pool of adenine nucleotides (AMP, ADP, ATP) was observed. Other stresses such as heat shock or oxidative stress did not result in PAP accumulation. PAPS concentrations also increased during salt stress but remained lower than 0.5 microM. S-Adenosylmethionine concentrations decreased by 50%, reflecting inhibition of sulfate assimilation during salt stress. Salt-induced PAP accumulation was attenuated in a yeast strain overexpressing HAL2. This strain grew better than the wild type under salt stress. These results suggest that the cation sensitivity of the HAL2 nucleotidase is an important determinant of the inhibition of yeast growth by sodium and lithium salts. In addition to blocking sulfate assimilation by product inhibition of PAPS reductase, PAP accumulation may have other unidentified toxic effects.


Asunto(s)
Proteínas Fúngicas/metabolismo , Cloruro de Litio/toxicidad , Nucleotidasas/metabolismo , Cloruro de Litio/metabolismo , Metionina/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Sulfatos/metabolismo
12.
J Cell Biochem ; 57(4): 630-40, 1995 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7615647

RESUMEN

Changes in intracellular pH (pHin) take part in the mitogenic response. Their importance has been stressed by the finding that mouse fibroblasts expressing a yeast proton pumping ATPase (PMA1) exhibit a transformed phenotype and are tumorigenic. These cells do maintain a higher pHin, supporting the idea that elevated pHin may act as a proliferative trigger. Here we show that cells constitutively expressing PMA1 have higher levels of the AP-1 transcription factor. The use of stable transfectants and transient transfection assays show that PMA1 activity induces transactivation of the c-fos promoter. The activation of the promoter is mediated throughout the serum response element (SRE). The use of protein kinase C inhibitors suggests that AP-1 activation is achieved through a pathway independent of protein kinase C.


Asunto(s)
Endopeptidasas , Genes fos , Proteínas Oncogénicas , Regiones Promotoras Genéticas , Bombas de Protones/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Células 3T3 , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/genética , Animales , Secuencia de Bases , Bovinos , Colforsina/farmacología , Medios de Cultivo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Electroforesis , Concentración de Iones de Hidrógeno , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/biosíntesis , Proteínas de Fusión Oncogénica/genética , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas , Factor de Respuesta Sérica , Activador de Tejido Plasminógeno/farmacología , Factor de Transcripción AP-1/biosíntesis , Factor de Transcripción AP-1/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transfección , Ubiquitina Tiolesterasa
13.
J Gen Virol ; 76 ( Pt 4): 729-40, 1995 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9049318

RESUMEN

A group of cross-hybridizing DNA segments contained within the EcoRI restriction fragments U', X and J of a Vero cell-adapted strain (BA71V) of African swine fever virus (ASFV) were mapped and sequenced. Analysis of the nucleotide sequence revealed the presence of a set of long internal repeated sequences composed of five types of tandemly repeat units of about 200 bp. These tandem repeats contain a G-rich core of 10-14 nucleotides surrounded by regions with a high A + T content distributed in oligo(dA).oligo(dT) tracts. Next to the repeated sequences we detected two related open reading frames that are members of a new multigene family (multigene family 300). Comparison of DNA sequences from several virus isolates indicated that this region undergoes frequent rearrangements leading to either duplications or deletions of the repeat units. These ASFV repeated sequences share similarities with chromosomal alpha satellite DNA, the scaffold-associated region and satellite III of Drosophila. Similar tandemly repeated sequences have not been described in other viruses.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , ADN Viral/análisis , Secuencias Repetitivas de Ácidos Nucleicos , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Southern Blotting , Chlorocebus aethiops , Mapeo Cromosómico , Desoxirribonucleasa EcoRI/metabolismo , Desoxirribonucleasa HindIII/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Transcripción Genética , Células Vero
14.
Science ; 267(5195): 232-4, 1995 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-7809627

RESUMEN

Overexpression of a yeast gene, HAL2, allows the cells to tolerate higher than normal extracellular salt concentrations. HAL2 encodes a 3'(2')5'-bisphosphate nucleotidase that serves to remove the end products of sulfate transfer during cellular metabolism. The enzyme is inhibited by lithium and sodium and is activated by potassium. Metabolic systems that are sensitive to salt, as well as those governing osmolyte synthesis and ion transport, offer routes by which genetic engineering can be used to improve the tolerance of various organisms to salt.


Asunto(s)
Proteínas Fúngicas/metabolismo , Litio/farmacología , Nucleotidasas/metabolismo , Saccharomyces cerevisiae/enzimología , Sodio/farmacología , Sulfatos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Activación Enzimática , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Nucleotidasas/antagonistas & inhibidores , Nucleotidasas/genética , Potasio/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...