Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 39(13-15): 923-941, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37132598

RESUMEN

Significance: Glioblastoma is an aggressive and devastating brain tumor characterized by a dismal prognosis and resistance to therapeutic intervention. To support catabolic processes critical for unabated cellular growth and defend against harmful reactive oxygen species, glioblastoma tumors upregulate the expression of wild-type isocitrate dehydrogenases (IDHs). IDH enzymes catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), NAD(P)H, and CO2. On molecular levels, IDHs epigenetically control gene expression through effects on α-KG-dependent dioxygenases, maintain redox balance, and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis. Recent Advances: While gain-of-function mutations in IDH1 and IDH2 represent one of the most comprehensively studied mechanisms of IDH pathogenic effects, recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down regulated, as contributing to glioblastoma progression. Critical Issues: Here, we will discuss molecular mechanisms of how wild-type IDHs control glioma pathogenesis, including the regulation of oxidative stress and de novo lipid biosynthesis, and provide an overview of current and future research directives that aim to fully characterize wild-type IDH-driven metabolic reprogramming and its contribution to the pathogenesis of glioblastoma. Future Directions: Future studies are required to further dissect mechanisms of metabolic and epigenomic reprogramming in tumors and the tumor microenvironment, and to develop pharmacological approaches to inhibit wild-type IDH function. Antioxid. Redox Signal. 39, 923-941.


Asunto(s)
Glioblastoma , Isocitrato Deshidrogenasa , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Glioblastoma/genética , Isocitratos , Mutación , Oxidorreductasas/metabolismo , Oxidación-Reducción , Homeostasis , Microambiente Tumoral
2.
Sci Adv ; 5(5): eaaw4543, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31131326

RESUMEN

Isocitrate dehydrogenases (IDHs) are critical metabolic enzymes that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG), NAD(P)H, and CO2. IDHs epigenetically control gene expression through effects on αKG-dependent dioxygenases, maintain redox balance and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis, and regulate respiration and energy production through generation of NADH. Cancer-associated mutations in IDH1 and IDH2 represent one of the most comprehensively studied mechanisms of IDH pathogenic effect. Mutant enzymes produce (R)-2-hydroxyglutarate, which in turn inhibits αKG-dependent dioxygenase function, resulting in a global hypermethylation phenotype, increased tumor cell multipotency, and malignancy. Recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down-regulated, as contributing to cancer and neurodegeneration, respectively. We describe how mutant and wild-type enzymes contribute on molecular levels to disease pathogenesis, and discuss efforts to pharmacologically target IDH-controlled metabolic rewiring.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Mutación , Neoplasias/genética , Sitio Alostérico , Animales , Dominio Catalítico , Ciclo del Ácido Cítrico , Citoplasma/metabolismo , Metilación de ADN , Epigénesis Genética , Glutaratos/metabolismo , Homeostasis , Humanos , Sistema Inmunológico , Concentración 50 Inhibidora , Isocitrato Deshidrogenasa/metabolismo , Ratones , Mitocondrias/metabolismo , NADP/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Fenotipo
3.
Sci Rep ; 8(1): 14732, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283000

RESUMEN

Developing effective treatment strategies for neurodegenerative diseases require an understanding of the underlying cellular pathways that lead to neuronal vulnerability and progressive degeneration. To date, numerous mutations in 147 distinct genes are identified to be "associated" with, "modifier" or "causative" of amyotrophic lateral sclerosis (ALS). Protein products of these genes and their interactions helped determine the protein landscape of ALS, and revealed upstream modulators, key canonical pathways, interactome domains and novel therapeutic targets. Our analysis originates from known human mutations and circles back to human, revealing increased PPARG and PPARGC1A expression in the Betz cells of sALS patients and patients with TDP43 pathology, and emphasizes the importance of lipid homeostasis. Downregulation of YWHAZ, a 14-3-3 protein, and cytoplasmic accumulation of ZFYVE27 especially in diseased Betz cells of ALS patients reinforce the idea that perturbed protein communications, interactome defects, and altered converging pathways will reveal novel therapeutic targets in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Terapia Molecular Dirigida , Corteza Motora/metabolismo , Mapas de Interacción de Proteínas/genética , Proteínas 14-3-3/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/terapia , Humanos , Corteza Motora/patología , Mutación/genética , PPAR gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Células Piramidales/metabolismo , Transducción de Señal/genética , Proteínas de Transporte Vesicular
4.
Cancer Prev Res (Phila) ; 8(7): 650-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908507

RESUMEN

Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of Apc(Min/+) and Apc(Min/+);Msh2(-/-) mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our Apc(Min/) (+) model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in Apc(Min/) (+);Msh2(-/-) mice. We used the pink-eyed unstable (p(un)) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Técnicas Genéticas , Recombinación Homóloga , RecQ Helicasas/genética , Adenoma/genética , Animales , Síndrome de Bloom/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Dosificación de Gen , Humanos , Neoplasias Intestinales/genética , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...