Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 31(4): 1074-1087, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36793210

RESUMEN

While a number of methods exist to investigate CRISPR off-target (OT) editing, few have been compared head-to-head in primary cells after clinically relevant editing processes. Therefore, we compared in silico tools (COSMID, CCTop, and Cas-OFFinder) and empirical methods (CHANGE-Seq, CIRCLE-Seq, DISCOVER-Seq, GUIDE-Seq, and SITE-Seq) after ex vivo hematopoietic stem and progenitor cell (HSPC) editing. We performed editing using 11 different gRNAs complexed with Cas9 protein (high-fidelity [HiFi] or wild-type versions), then performed targeted next-generation sequencing of nominated OT sites identified by in silico and empirical methods. We identified an average of less than one OT site per guide RNA (gRNA) and all OT sites generated using HiFi Cas9 and a 20-nt gRNA were identified by all OT detection methods with the exception of SITE-seq. This resulted in high sensitivity for the majority of OT nomination tools and COSMID, DISCOVER-Seq, and GUIDE-Seq attained the highest positive predictive value (PPV). We found that empirical methods did not identify OT sites that were not also identified by bioinformatic methods. This study supports that refined bioinformatic algorithms could be developed that maintain both high sensitivity and PPV, thereby enabling more efficient identification of potential OT sites without compromising a thorough examination for any given gRNA.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Antígenos CD34 , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , ARN Guía de Sistemas CRISPR-Cas
2.
Nucleic Acids Res ; 49(7): 4037-4053, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744974

RESUMEN

Cas9 is an RNA-guided endonuclease in the bacterial CRISPR-Cas immune system and a popular tool for genome editing. The commonly used Streptococcus pyogenes Cas9 (SpCas9) is relatively non-specific and prone to off-target genome editing. Other Cas9 orthologs and engineered variants of SpCas9 have been reported to be more specific. However, previous studies have focused on specificity of double-strand break (DSB) or indel formation, potentially overlooking alternative cleavage activities of these Cas9 variants. In this study, we employed in vitro cleavage assays of target libraries coupled with high-throughput sequencing to systematically compare cleavage activities and specificities of two natural Cas9 variants (SpCas9 and Staphylococcus aureus Cas9) and three engineered SpCas9 variants (SpCas9 HF1, HypaCas9 and HiFi Cas9). We observed that all Cas9s tested could cleave target sequences with up to five mismatches. However, the rate of cleavage of both on-target and off-target sequences varied based on target sequence and Cas9 variant. In addition, SaCas9 and engineered SpCas9 variants nick targets with multiple mismatches but have a defect in generating a DSB, while SpCas9 creates DSBs at these targets. Overall, these differences in cleavage rates and DSB formation may contribute to varied specificities observed in genome editing studies.


Asunto(s)
Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Staphylococcus aureus/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica , Especificidad por Sustrato
3.
J Biol Chem ; 295(17): 5538-5553, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161115

RESUMEN

Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.


Asunto(s)
Acidaminococcus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/genética , Endodesoxirribonucleasas/metabolismo , Francisella/enzimología , Acidaminococcus/genética , Acidaminococcus/metabolismo , Proteínas Bacterianas/genética , Disparidad de Par Base , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , ADN/metabolismo , División del ADN , Endodesoxirribonucleasas/genética , Francisella/genética , Francisella/metabolismo , Edición Génica/métodos , Expresión Génica
4.
Sci Rep ; 9(1): 19902, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882637

RESUMEN

An important advantage of delivering CRISPR reagents into cells as a ribonucleoprotein (RNP) complex is the ability to edit genes without reagents being integrated into the genome. Transient presence of RNP molecules in cells can reduce undesirable off-target effects. One method for RNP delivery into plant cells is the use of a biolistic gun. To facilitate selection of transformed cells during RNP delivery, a plasmid carrying a selectable marker gene can be co-delivered with the RNP to enrich for transformed/edited cells. In this work, we compare targeted mutagenesis in rice using three different delivery platforms: biolistic RNP/DNA co-delivery; biolistic DNA delivery; and Agrobacterium-mediated delivery. All three platforms were successful in generating desired mutations at the target sites. However, we observed a high frequency (over 14%) of random plasmid or chromosomal DNA fragment insertion at the target sites in transgenic events generated from both biolistic delivery platforms. In contrast, integration of random DNA fragments was not observed in transgenic events generated from the Agrobacterium-mediated method. These data reveal important insights that must be considered when selecting the method for genome-editing reagent delivery in plants, and emphasize the importance of employing appropriate molecular screening methods to detect unintended alterations following genome engineering.


Asunto(s)
Sistemas CRISPR-Cas/genética , Oryza/genética , Plásmidos/genética , ARN de Planta/genética , Agrobacterium/genética , Fragmentación del ADN , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Methods Enzymol ; 616: 337-363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30691650

RESUMEN

CRISPR-Cas systems protect prokaryotic cells from invading phages and plasmids by recognizing and cleaving foreign nucleic acid sequences specified by CRISPR RNA spacer sequences. Several CRISPR-Cas systems have been widely used as tool for genetic engineering. In DNA-targeting CRISPR-Cas nucleoprotein effector complexes, the CRISPR RNA forms a hybrid with the complementary strand of foreign DNA, displacing the noncomplementary strand to form an R-loop. The DNA interrogation and R-loop formation involve several distinct steps the molecular details of which are not fully understood. This chapter describes a recently developed fluorometric Cas beacon assay that may be used for measuring of specific affinity of various CRISPR-Cas complexes for unlabeled target DNA and model DNA probes. The Cas beacon approach also can provide a sensitive method for monitoring the kinetics of assembly of CRISPR-Cas complexes.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , Sondas de ADN/metabolismo , Fluorometría/métodos , ARN Guía de Kinetoplastida/metabolismo
7.
Mol Cell ; 68(1): 15-25, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985502

RESUMEN

CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/genética , Edición Génica/métodos , Genoma , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Bacteriófagos/crecimiento & desarrollo , Endonucleasas/química , Endonucleasas/clasificación , Endonucleasas/metabolismo , Ingeniería Genética , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...