Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Psychiatr Scand ; 142(6): 476-485, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32936930

RESUMEN

OBJECTIVE: We set forth to build a prediction model of individuals who would develop bipolar disorder (BD) using machine learning techniques in a large birth cohort. METHODS: A total of 3748 subjects were studied at birth, 11, 15, 18, and 22 years of age in a community birth cohort. We used the elastic net algorithm with 10-fold cross-validation to predict which individuals would develop BD at endpoint (22 years) at each follow-up visit before diagnosis (from birth up to 18 years). Afterward, we used the best model to calculate the subgroups of subjects at higher and lower risk of developing BD and analyzed the clinical differences among them. RESULTS: A total of 107 (2.8%) individuals within the cohort presented with BD type I, 26 (0.6%) with BD type II, and 87 (2.3%) with BD not otherwise specified. Frequency of female individuals was 58.82% (n = 150) in the BD sample and 53.02% (n = 1868) among the unaffected population. The model with variables assessed at the 18-year follow-up visit achieved the best performance: AUC 0.82 (CI 0.75-0.88), balanced accuracy 0.75, sensitivity 0.72, and specificity 0.77. The most important variables to detect BD at the 18-year follow-up visit were suicide risk, generalized anxiety disorder, parental physical abuse, and financial problems. Additionally, the high-risk subgroup of BD showed a high frequency of drug use and depressive symptoms. CONCLUSIONS: We developed a risk calculator for BD incorporating both demographic and clinical variables from a 22-year birth cohort. Our findings support previous studies in high-risk samples showing the significance of suicide risk and generalized anxiety disorder prior to the onset of BD, and highlight the role of social factors and adverse life events.


Asunto(s)
Trastornos de Ansiedad/psicología , Trastorno Bipolar/diagnóstico , Depresión/psicología , Vigilancia de la Población , Medición de Riesgo/métodos , Algoritmos , Trastornos de Ansiedad/epidemiología , Trastorno Bipolar/epidemiología , Trastorno Bipolar/psicología , Estudios de Cohortes , Depresión/epidemiología , Femenino , Humanos , Aprendizaje Automático , Masculino , Abuso Físico , Valor Predictivo de las Pruebas , Factores Socioeconómicos , Trastornos Relacionados con Sustancias/epidemiología , Suicidio/estadística & datos numéricos , Adulto Joven
2.
Acta Psychiatr Scand ; 134(2): 91-103, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27097559

RESUMEN

OBJECTIVE: We aimed to review clinical features and biological underpinnings related to neuroprogression in bipolar disorder (BD). Also, we discussed areas of controversy and future research in the field. METHOD: We systematically reviewed the extant literature pertaining to neuroprogression and BD by searching PubMed and EMBASE for articles published up to March 2016. RESULTS: A total of 114 studies were included. Neuroimaging and clinical evidence from cross-sectional and longitudinal studies show that a subset of patients with BD presents a neuroprogressive course with brain changes and unfavorable outcomes. Risk factors associated with these unfavorable outcomes are number of mood episodes, early trauma, and psychiatric and clinical comorbidity. CONCLUSION: Illness trajectories are largely variable, and illness progression is not a general rule in BD. The number of manic episodes seems to be the clinical marker more robustly associated with neuroprogression in BD. However, the majority of the evidence came from cross-sectional studies that are prone to bias. Longitudinal studies may help to identify signatures of neuroprogression and integrate findings from the field of neuroimaging, neurocognition, and biomarkers.


Asunto(s)
Trastorno Bipolar/psicología , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Encéfalo/patología , Estudios Transversales , Progresión de la Enfermedad , Humanos , Estudios Longitudinales , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA