Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732509

RESUMEN

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Eugenol , Mitosis , Especies Reactivas de Oxígeno , Animales , Adipogénesis/efectos de los fármacos , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Mitosis/efectos de los fármacos , Eugenol/farmacología , Eugenol/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , PPAR gamma/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Metabolismo de los Lípidos/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Antioxidantes/farmacología
2.
Heliyon ; 10(10): e30298, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778941

RESUMEN

Olfactory receptors (ORs), the largest family of G protein-coupled receptors (GPCRs), are ectopically expressed in cancer cells and are involved in cellular physiological processes, but their function as anticancer targets is still potential. OR2AT4 is expressed in leukemia cells, influencing the proliferation and apoptosis, yet the limited number of known OR2AT4 agonists makes it challenging to fully generalize the receptor's function. In this study, we aimed to identify new ligands for OR2AT4 and to investigate their functions and mechanisms in K562 leukemia cells. After producing the recombinant OR2AT4 protein, immobilizing it on a surface plasmon resonance chip, and conducting screening to confirm binding activity using 258 chemicals, five novel OR2AT4 ligands were discovered. As a result of examining changes in intracellular calcium by five ligands in OR2AT4-expressing cells and K562 cells, (-)-epigallocatechin gallate (EGCG) was identified as an OR2AT4 agonist in both cells. EGCG reduced the viability of K562 cells and induced apoptosis in K562 cells. EGCG increased the expression of cleaved caspase 3/8 and had no effect on the expression of Bax and Bcl-2, indicating that it induced apoptosis through the extrinsic pathway. Additionally, the initiation of the extrinsic apoptosis pathway in EGCG-induced K562 cells was due to the activation of OR2AT4, using an OR2AT4 antagonist. This study highlights the potential of EGCG as an anti-cancer agent against leukemia and OR2AT4 as a target, making it a new anti-cancer drug.

3.
Aging (Albany NY) ; 16(3): 2005-2025, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38329439

RESUMEN

Adult stem cells are pivotal for maintaining tissue homeostasis, and their functional decline is linked to aging and its associated diseases, influenced by the niche cells' environment. Age- and cancer-related reduction of vitamin D and its receptor levels are well documented in human clinical studies. However, the mechanisms through which the vitamin D/vitamin D receptor pathway contributes to anti-aging and extends life expectancy are not well understood. In this study, we aimed to determine the protective role of the vitamin D/vitamin D receptor pathway in differentiated enterocytes (ECs) during intestinal stem cell (ISC) aging. By utilizing a well- established Drosophila midgut model for stem cell aging biology, we revealed that vitamin D receptor knockdown in ECs induced ISC proliferation, EC death, ISC aging, and enteroendocrine cell differentiation. Additionally, age- and oxidative stress-induced increases in ISC proliferation and centrosome amplification were reduced by vitamin D treatment. Our findings suggest a direct evidence of the anti-aging role of the vitamin D/vitamin D receptor pathway and provides insights into the molecular mechanisms underlying healthy aging in Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Drosophila/fisiología , Vitamina D/farmacología , Vitamina D/metabolismo , Receptores de Calcitriol/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Envejecimiento/metabolismo , Intestinos , Diferenciación Celular/fisiología , Proliferación Celular , Drosophila melanogaster/metabolismo
4.
Sleep ; 47(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37950346

RESUMEN

STUDY OBJECTIVES: Dual orexin receptor antagonists (DORAs) are emerging treatments for insomnia. This meta-analysis study aimed to assess the safety of FDA-approved DORAs (suvorexant, lemborexant, and daridorexant), focusing on narcolepsy-like symptoms associated with these drugs. METHODS: Five prominent databases were searched to identify randomized controlled trials (RCTs) on this topic. Primary safety outcomes included treatment-emergent adverse events (TEAEs), treatment-related TEAEs, TEAEs leading to discontinuation, and serious TEAEs. Excessive daytime sleepiness (EDS), sleep paralysis, and hallucinations were categorized as adverse events (AEs)-related narcolepsy-like symptoms. RESULTS: Eleven RCTs with 7703 patients were included. DORAs were associated with a higher risk of TEAEs (risk ratio [RR], 1.09; 95% confidence interval [CI], 1.03 to 1.15) and treatment-related TEAEs (RR, 1.69; 95% CI: 1.49 to 1.92) when compared to placebo. The DORA group exhibited a significantly higher risk of EDS (RR, 2.15; 95% CI: 1.02 to 4.52) and sleep paralysis (RR, 3.40; 95% CI: 1.18 to 9.80) compared to the placebo group. CONCLUSION: This meta-analysis achieved a comparative evaluation of the clinical safety and tolerability of FDA-approved DORAs for primary insomnia, specifically focusing on AEs-related narcolepsy-like symptoms. This study contributes to understanding the safety profile of FDA-approved DORAs for treating insomnia.


Asunto(s)
Narcolepsia , Trastornos del Inicio y del Mantenimiento del Sueño , Parálisis del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Antagonistas de los Receptores de Orexina/efectos adversos , Narcolepsia/tratamiento farmacológico
5.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513959

RESUMEN

Chronic kidney disease (CKD) gradually leads to loss of renal function and is associated with inflammation and fibrosis. Chrysanthemum coronarium L., a leafy vegetable, possesses various beneficial properties, including anti-oxidative, anti-inflammatory, and antiproliferative effects. In this study, we investigated the renoprotective effect of Chrysanthemum coronarium L. extract (CC) on adenine (AD)-induced CKD in mice. CKD was induced by feeding mice with an AD diet (0.25% w/w) for 4 weeks. Changes in renal function, histopathology, inflammation, and renal interstitial fibrosis were analyzed. The adenine-fed mice were characterized by increased blood urea nitrogen, serum creatinine, and histological changes, including inflammation and fibrosis; however, these changes were significantly restored by treatment with CC. Additionally, CC inhibited the expression of the inflammatory markers, monocyte chemoattractant protein-1, interleukins-6 and -1ß, intercellular adhesion molecule-1, and cyclooxygenase 2. Moreover, CC suppressed the expression of the fibrotic markers, type IV collagen, and fibronectin. Furthermore, CC attenuated the expression of profibrotic genes (tumor growth factor-ß and α-smooth muscle actin) in AD-induced renal injury mice. Thus, our results suggest that CC has the potential to attenuate AD-induced renal injury and might offer a new option as a renoprotective agent or functional food supplement to manage CKD.

6.
PLoS Genet ; 18(3): e1010128, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294432

RESUMEN

Tissue homeostasis requires a delicate balance between stem cell self-renewal, proliferation, and differentiation. Essential to this process is glycosylation, with both intra-and extra-cellular glycosylation being required for stem cell homeostasis. However, it remains unknown how intracellular glycosylation, O-GlcNAcylation, interfaces with cellular components of the extracellular glycosylation machinery, like the cytosolic N-glycanase NGLY1. In this study, we utilize the Drosophila gut and uncover a pathway in which O-GlcNAcylation cooperates with the NGLY1 homologue PNG1 to regulate proliferation in intestinal stem cells (ISCs) and apoptosis in differentiated enterocytes. Further, the CncC antioxidant signaling pathway and ENGase, an enzyme involved in the processing of free oligosaccharides in the cytosol, interact with O-GlcNAc and PNG1 through regulation of protein aggregates to contribute to gut maintenance. These findings reveal a complex coordinated regulation between O-GlcNAcylation and the cytosolic glycanase PNG1 critical to balancing proliferation and apoptosis to maintain gut homeostasis.


Asunto(s)
Apoptosis , Drosophila , Animales , Proliferación Celular , Citosol , Drosophila/metabolismo , Homeostasis
7.
Front Genet ; 11: 605263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329753

RESUMEN

Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked ß-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.

8.
Cell Rep ; 31(6): 107632, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32402277

RESUMEN

Stem/progenitor cells exhibit high proliferation rates, elevated nutrient uptake, altered metabolic flux, and stress-induced genome instability. O-GlcNAcylation is an essential post-translational modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which act in a nutrient- and stress-responsive manner. The precise role of O-GlcNAc in adult stem cells and the relationship between O-GlcNAc and the DNA damage response (DDR) is poorly understood. Here, we show that hyper-O-GlcNacylation leads to elevated insulin signaling, hyperproliferation, and DDR activation that mimic the glucose- and oxidative-stress-induced response. We discover a feedback mechanism involving key downstream effectors of DDR, ATM, ATR, and CHK1/2 that regulates OGT stability to promote O-GlcNAcylation and elevate DDR. This O-GlcNAc-dependent regulatory pathway is critical for maintaining gut homeostasis in Drosophila and the DDR in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Our findings reveal a conserved mechanistic link among O-GlcNAc cycling, stem cell self-renewal, and DDR with profound implications for stem-cell-derived diseases including cancer.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Células Madre/metabolismo , Animales , Homeostasis , Humanos , Ratones , Transducción de Señal
9.
Biochem Biophys Res Commun ; 498(1): 18-24, 2018 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-29496445

RESUMEN

Age-related changes of adult stem cell are crucial for tissue aging and age-related diseases. Thus, clarifying mechanisms to prevent adult stem cell aging is indispensable for healthy aging. Metformin, a drug for type 2 diabetes, has been highlighted for its anti-aging and anti-cancer effect. In Drosophila intestinal stem cell (ISC), we previously reported the inhibitory effect of metformin on age-related phenotypes of ISC. Here, we showed that knockdown of Atg6, a crucial autophagy-related factor, in ISC induces age-related phenotypes of ISC such as hyperproliferation, centrosome amplification, and DNA damage accumulation. Then, we revealed that metformin inhibits ISC aging phenotypes in Atg6-dependent manner. Taken together, our study suggests that Atg6 is required for the inhibitory effect of metformin on ISC aging, providing an intervention mechanism of metformin on adult stem cell aging.


Asunto(s)
Beclina-1/deficiencia , Senescencia Celular/efectos de los fármacos , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/citología , Intestinos/citología , Metformina/farmacología , Células Madre/citología , Células Madre/metabolismo , Animales , Beclina-1/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Técnicas de Silenciamiento del Gen , Paraquat/toxicidad , Fenotipo , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos
10.
Aging (Albany NY) ; 7(5): 307-18, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26000719

RESUMEN

The stem cell genomic stability forms the basis for robust tissue homeostasis, particularly in high-turnover tissues. For the genomic stability, DNA damage response (DDR) is essential. This study was focused on the role of two major DDR-related factors, ataxia telangiectasia-mutated (ATM) and ATM- and RAD3-related (ATR) kinases, in the maintenance of intestinal stem cells (ISCs) in the adultDrosophila midgut. We explored the role of ATM and ATR, utilizing immunostaining with an anti-pS/TQ antibody as an indicator of ATM/ATR activation, γ-irradiation as a DNA damage inducer, and the UAS/GAL4 system for cell type-specific knockdown of ATM, ATR, or both during adulthood. The results showed that the pS/TQ signals got stronger with age and after oxidative stress. The pS/TQ signals were found to be more dependent on ATR rather than on ATM in ISCs/enteroblasts (EBs). Furthermore, an ISC/EB-specific knockdown of ATR, ATM, or both decreased the number of ISCs and oxidative stress-induced ISC proliferation. The phenotypic changes that were caused by the ATR knockdown were more pronounced than those caused by the ATM knockdown; however, our data indicate that ATR and ATM are both needed for ISC maintenance and proliferation; ATR seems to play a bigger role than does ATM.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Intestinos/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/metabolismo , Células Madre Adultas/citología , Envejecimiento , Animales , Drosophila , Inmunohistoquímica , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA