Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Plant Sci ; 2(7)2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25202642

RESUMEN

PREMISE OF THE STUDY: The locally rare, haploid, lichen-forming fungi Bryoria capillaris, B. fuscescens, and B. implexa are associated with boreal forests and belong to Bryoria sect. Implexae. Recent phylogenetic studies consider them to be conspecific. Microsatellite loci were developed to study population structure in Bryoria sect. Implexae and its response to ecosystem disturbances. • METHODS AND RESULTS: We developed 18 polymorphic microsatellite markers using 454 pyrosequencing data assessed in 82 individuals. The number of alleles per locus ranged from two to 13 with an average of 4.6. Nei's unbiased gene diversity, averaged over loci, ranged from 0.38 to 0.52. The markers amplified with all three species, except for markers Bi05, Bi15, and Bi18. • CONCLUSIONS: The new markers will allow the study of population subdivision, levels of gene introgression, and levels of clonal spread of Bryoria sect. Implexae. They will also facilitate an understanding of the effects of forest disturbance on genetic diversity of these lichen species.

2.
Mol Ecol ; 23(21): 5164-78, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25244617

RESUMEN

Population genetics of the tree-colonizing lichen Lobaria pulmonaria were studied in the largest primeval beech forest of Europe, covering 10 000 ha. During an intensive survey of the area, we collected 1522 thallus fragments originating from 483 trees, which were genotyped with eight mycobiont- and 14 photobiont-specific microsatellite markers. The mycobiont and photobiont of L. pulmonaria were found to consist of two distinct gene pools, which are co-existing within small areas of 3-180 ha in a homogeneous beech forest. The small-scale distribution pattern of the symbiotic gene pools show habitat partitioning of lineages associated with either floodplains or mountain forests. Using approximate Bayesian computation (ABC), we dated the divergence of the two fungal gene pools of L. pulmonaria as the Early Pleistocene. Both fungal gene pools survived the Pleistocene glacial cycles in the Carpathians, although possibly in climatically different refugia. Fungal diversification prior to these cycles and the selection of photobionts with different altitudinal distributions explain the current sympatric, but ecologically differentiated habitat partitioning of L. pulmonaria. In addition, the habitat preferences of the mycobiont are determined by other factors and are rather independent of those of the photobiont at the landscape level. The distinct gene pools should be considered evolutionarily significant units and deserve specific conservation priorities in the future, for example gene pool A, which is a Pliocene relict.


Asunto(s)
Pool de Genes , Líquenes/genética , Microclima , Simbiosis/genética , Altitud , Teorema de Bayes , Evolución Biológica , Cianobacterias/genética , Fagus , Bosques , Hongos/genética , Variación Genética , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADN , Ucrania
3.
Lichenologist (Lond) ; 42(5): 521-531, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22121298

RESUMEN

To test the phylogenetic position of phenotypically peculiar species in the Physciaceae we generated 47 new sequences (26 of nrITS region and 21 of mtSSU rDNA) from 19 crustose taxa of Physciaceae mainly from the genus Rinodina. Phylogenetic analysis confirmed the Buellia and Physcia groups. The analysis revealed a considerable variability of characters traditionally used for classification, especially in the delimitation of the genera Buellia and Rinodina. While ascus types agree well with the distinction of the Buellia and Physcia groups, none of the other traditional characters, including excipulum type and ascospore thickening, were consistent within subclades of the Physcia group. We suggest that both excipulum type and ascospore characters are rather dynamic in the evolution of Rinodina species and only appear consistent in morphologically more complex foliose and fruticose groups, which are characterized by thallus characters not present in the crustose groups. Two recent taxonomic changes are supported by molecular characters: Endohyalina insularis (syn. 'Rinodina' insularis) and Rinodina lindingeri (syn. 'Buellia' lindingeri). In addition Rinodina parvula (syn. 'Buellia' parvula) is reinstated. New records for Endohyalina brandii, E. diederichii, E. insularis and Rinodina albana are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA