Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854120

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by intratumoral abundance of neutrophilic/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) which inhibit T-cell function through JAK2/STAT3-regulated arginase activity. To overcome limitations of systemic inhibition of PMN-MDSCs in cancer-bearing patients-i.e., neutropenia and compensatory myelopoietic adaptations-we develop a nanoengineering strategy to target cell-specific signaling exclusively in PMN-MDSCs without provoking neutropenia. We conjugate a chemically modified small-molecule inhibitor of MDSC-surface receptor CXCR2 (AZD5069) with polyethylene glycol (PEG) and chemically graft AZD5069-PEG constructs onto amphiphilic polysaccharide derivatives to engineer CXCR2-homing nanoparticles (CXCR2-NP). Cy5.5 dye-loaded CXCR2-NP showed near-exclusive uptake in PMN-MDSCs compared with PDAC tumor-cells, cancer-associated fibroblasts, and macrophages. Encapsulation of JAK2/STAT3i Ruxolitinib (CXCR2-NP Ruxo ) resulted in more durable attenuation in STAT3-regulated arginase activity from PMN-MDSCs and induction of cytolytic T-cell activity vs. free Ruxolitinib in-vitro and in-vivo . Cell-specific delivery of payloads via CXCR2-homing immunonanoparticles represents a novel strategy to disrupt MDSC-mediated immunosuppression and invigorate antitumor immunity in PDAC.

2.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38903082

RESUMEN

BACKGROUND AND AIMS: In vivo induction of alcoholic chronic pancreatitis (ACP) causes significant acinar damage, increased fibroinflammatory response, and heightened activation of cyclic response element binding protein 1 (CREB) when compared with alcohol (A) or chronic pancreatitis (CP) mediated pancreatic damage. However, the study elucidating the cooperative interaction between CREB and the oncogenic Kras G12D/+ (Kras*) in promoting pancreatic cancer progression with ACP remains unexplored. METHODS: Experimental ACP induction was established in multiple mouse models, followed by euthanization of the animals at various time intervals during the recovery periods. Tumor latency was determined in these mice cohorts. Here, we established CREB deletion (Creb fl/fl ) in Ptf1a CreERTM/+ ;LSL-Kras G12D+/-(KC) genetic mouse models (KCC-/-). Western blot, phosphokinase array, and qPCR were used to analyze the pancreata of Ptf1a CreERTM+/-, KC and KCC -/- mice. The pancreata of ACP-induced KC mice were subjected to single-cell RNA sequencing (scRNAseq). Further studies involved conducting lineage tracing and acinar cell explant cultures. RESULTS: ACP induction in KC mice had detrimental effects on the pancreatic damage repair mechanism. The persistent existence of acinar cell-derived ductal lesions demonstrated a prolonged state of hyperactivated CREB. Persistent CREB activation leads to acinar cell reprogramming and increased pro-fibrotic inflammation in KC mice. Acinar-specific Creb ablation reduced advanced PanINs lesions, hindered tumor progression, and restored acinar cell function in ACP-induced mouse models. CONCLUSIONS: Our findings demonstrate that CREB cooperates with Kras* to perpetuate an irreversible ADM and PanIN formation. Moreover, CREB sustains oncogenic activity to promote the progression of premalignant lesions toward cancer in the presence of ACP.

4.
Chemosphere ; 355: 141820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561158

RESUMEN

Organic solvent nanofiltration (OSN) is an incipient technology in the field of organic liquid-liquid separation. The incomplete separations and complexity involved in these, forces many organic liquids to be released as effluents and the adverse effects of these on environment is enormous and irreparable. The work prominences on the complete separation of industrially significant cyclohexanone: cyclohexanol (keto-alcohol oil) and heptane: toluene mixtures. The separations of these above-mentioned organic liquid mixtures were carried out using the fabricated Lewis acid modified graphitic carbon nitride (Cu2O@g-C3N4) incorporated polyvinylidene difluoride (PVDF) composite membranes. These fabricated membranes showed a separation factor of 18.16 and flux of 1.62 Lm-2h-1 for cyclohexanone: cyclohexanol mixture and separation of heptane and toluene mixture (with heptane flux of 1.52 Lm-2h-1) showed a separation factor of 9.9. The selectivity and productivity are based on the polarity and size of the organic liquids. The role of Cu2O@g-C3N4 is influencing the pore size distribution, increased divergence from solubility parameters, polarity, solvent uptake and porosity of the composite membranes. The developed composite membranes are thus envisioned to be apt for a wide range of liquid-liquid separations due to its implicit nature.


Asunto(s)
Ciclohexanoles , Ciclohexanonas , Heptanos , Solventes , Tolueno
5.
Cancer Res ; 84(8): 1320-1332, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38285896

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a KRAS-driven inflammatory program and a desmoplastic stroma, which contribute to the profoundly chemoresistant phenotype. The tumor stroma contains an abundance of cancer-associated fibroblasts (CAF), which engage in extensive paracrine cross-talk with tumor cells to perpetuate protumorigenic inflammation. IL1α, a pleiotropic, tumor cell-derived cytokine, plays a critical role in shaping the stromal landscape. To provide insights into the molecular mechanisms regulating IL1A expression in PDAC, we performed transcriptional profiling of The Cancer Genome Atlas datasets and pharmacologic screening in PDAC cells and identified p38α MAPK as a key positive regulator of IL1A expression. Both genetic and pharmacologic inhibition of p38 MAPK significantly diminished IL1α production in vitro. Chromatin- and coimmunoprecipitation analyses revealed that p38 MAPK coordinates the transcription factors Sp1 and the p65 subunit of NFκB to drive IL1A overexpression. Single-cell RNA sequencing of a highly desmoplastic murine PDAC model, Ptf1aCre/+; LSL-KrasG12D/+; Tgfbr2flox/flox (PKT), confirmed that p38 MAPK inhibition significantly decreases tumor cell-derived Il1a and attenuates the inflammatory CAF phenotype in a paracrine IL1α-dependent manner. Furthermore, p38 MAPK inhibition favorably modulated intratumoral immunosuppressive myeloid populations and augmented chemotherapeutic efficacy to substantially reduce tumor burden and improve overall survival in PKT mice. These findings illustrate a cellular mechanism of tumor cell-intrinsic p38-p65/Sp1-IL1α signaling that is responsible for sustaining stromal inflammation and CAF activation, offering an attractive therapeutic approach to enhance chemosensitivity in PDAC. SIGNIFICANCE: Inhibition of p38 MAPK suppresses tumor cell-derived IL1α and attenuates the inflammatory stroma and immunosuppressive tumor microenvironment to overcome chemotherapeutic resistance in pancreatic cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inflamación/patología , Microambiente Tumoral
6.
Environ Monit Assess ; 195(10): 1159, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673825

RESUMEN

Understanding natural phenomena with the help of modern scientific approaches helps to reach sustainable solutions for current and future water-related problems. In this context, present study aims to assess relative influencing level of physical factors in controlling groundwater level, using a novel grid-based delineation technique, in Lower Palar River Basin, in Kanchipuram and Chengalpattu districts of South India. The influencing factors viz-a-viz: rainfall, soil texture, land use/land cover, terrain slope, geomorphology, lithology, and drainage characteristics were considered for the study. Archived data (2011 to 2020) of monthly rainfall at four rain gauge stations and monthly groundwater level of 22 locations, soil texture, lithology, and geomorphology data were considered for the study. SRTM digital elevation model with 30-m resolution was used for analyzing drainage characteristics and terrain slope. Thematic maps for considered factors were prepared, using common grid delineation method in GIS platform that divided study area into 52 grids, to inter-relate the discrete and continuous parameters with groundwater level. Results indicate that level of influence increases in the order of precipitation followed by lithology, land use/land cover, terrain slope, geomorphology, infiltration number, and soil texture. The study shows groundwater resilience is highly influenced by soil texture and infiltration number compared to other factors considered. It can be concluded that grid-based delineation successfully identifies grids with significant influence of individual factors by comparing with groundwater resilience. Common grid-based delineation method proves to be more effective in assessing groundwater resilience and can be used more efficiently in groundwater studies.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , India , Lluvia , Suelo
7.
Sci Rep ; 13(1): 13365, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591909

RESUMEN

Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf fibre cellulose-collagen, KFCC). We loaded it with magnetic bimetallic Fe3O4@TiO2 (BFT) NPs to produce a photocatalyst material (KFCC-BFT) for the treatment of colored wastewater as well as a sorbent for oil-water separation. The characterization of the bimetallic BFT NPs by XRD, HRTEM and VSM showed the deposition of TiO2 particles onto the surface of Fe3O4 with lattice interlayers spacing of 0.24 and 0.33 nm for Fe3O4 and TiO2, respectively with ferromagnetic property. The UV-vis diffuse reflectance spectra result indicated that the band gap energy of bio-sponges decreases with the increase of the bimetallic moiety. The photocatalytic efficiency of the as-prepared magnetic hybrid bio-sponge in the degradation of crystal violet dye was up to 91.2% under visible light conditions and 86.6% under direct sunlight exposure. Furthermore, the magnetic hybrid bio-sponge was used to separate motor oil from water (> 99%) and had a high oil sorption capacity of 46.1 g/g. Investigation of the recyclability and reusability performance for 9 cycles revealed that the bio-sponge had a high sorption capacity for up to 5 cycles. Our results suggest that the bio-polymer-supported BFT hybrid nanocomposite is a cost-effective and easily biodegradable photocatalyst and has great potential for real-field environmental remediation applications.


Asunto(s)
Celulosa , Hibiscus , Animales , Aguas Residuales , Colágeno , Colorantes , Luz
8.
J Am Coll Radiol ; 20(12): 1241-1249, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574094

RESUMEN

PURPOSE: The number of FDA-cleared artificial intelligence (AI) algorithms for neuroimaging has grown in the past decade. The adoption of these algorithms into clinical practice depends largely on whether this technology provides value in the clinical setting. The objective of this study was to analyze trends in FDA-cleared AI algorithms for neuroimaging and understand their value proposition as advertised by the AI developers and vendors. METHODS: A list of AI algorithms cleared by the FDA for neuroimaging between May 2008 and August 2022 was extracted from the ACR Data Science Institute AI Central database. Product information for each device was collected from the database. For each device, information on the advertised value as presented on the developer's website was collected. RESULTS: A total of 59 AI neuroimaging algorithms were cleared by the FDA between May 2008 and August 2022. Most of these algorithms (24 of 59) were compatible with noncontrast CT, 21 with MRI, 9 with CT perfusion, 8 with CT angiography, 3 with MR perfusion, and 2 with PET. Six algorithms were compatible with multiple imaging techniques. Of the 59 algorithms, websites were located that discussed the product value for 55 algorithms. The most widely advertised value proposition was improved quality of care (38 of 55 [69.1%]). A total of 24 algorithms (43.6%) proposed saving user time, 9 (15.7%) advertised decreased costs, and 6 (10.9%) described increased revenue. Product websites for 26 algorithms (43.6%) showed user testimonials advertising the value of the technology. CONCLUSIONS: The results of this study indicate a wide range of value propositions advertised by developers and vendors of AI algorithms for neuroimaging. Most vendors advertised that their products would improve patient care. Further research is necessary to determine whether the value claimed by developers is actually demonstrated in clinical practice.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Neuroimagen , Academias e Institutos , Angiografía por Tomografía Computarizada
9.
Cancer Res Commun ; 3(7): 1224-1236, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448553

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance: Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T CD8-positivos/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Microambiente Tumoral
10.
Cancer Discov ; 13(6): 1428-1453, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36946782

RESUMEN

We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE: By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neutrófilos , Receptores Tipo II del Factor de Necrosis Tumoral/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Inflamación/genética , Microambiente Tumoral/fisiología , Quimiocina CXCL1/genética , Neoplasias Pancreáticas
11.
Ann R Coll Surg Engl ; 105(2): 186-190, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36622226

RESUMEN

Oesophageal carcinosarcoma (OCS) is a rare oesophageal cancer, expressing both carcinomatous and sarcomatous elements. Although believed to have a better prognosis, no standard guidelines exist for its diagnosis and management. We report a case of a 60-year male presenting with progressive dysphagia and weight loss. Endoscopy and contrast-enhanced computed tomography of the chest revealed a large polypoidal intraluminal growth at the mid-oesophagus. Endoscopic biopsy revealed a sarcoma of the oesophagus. The patient underwent McKeown minimally invasive oesophagectomy. Final histopathology was suggestive of OCS. Postoperatively, the patient received adjuvant chemoradiation. At 20-month follow-up, he was asymptomatic with no radiological evidence of recurrence.


Asunto(s)
Carcinosarcoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Masculino , Carcinosarcoma/diagnóstico , Carcinosarcoma/cirugía , Carcinoma de Células Escamosas de Esófago/cirugía , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/cirugía , Esofagectomía
12.
Gastroenterology ; 163(6): 1593-1612, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35948109

RESUMEN

BACKGROUND & AIMS: We have shown that reciprocally activated rat sarcoma (RAS)/mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and Janus kinase/signal transducer and activator of transcription 3 (STAT3) pathways mediate therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC), while combined MEK and STAT3 inhibition (MEKi+STAT3i) overcomes such resistance and alters stromal architecture. We now determine whether MEKi+STAT3i reprograms the cancer-associated fibroblast (CAF) and immune microenvironment to overcome resistance to immune checkpoint inhibition in PDAC. METHODS: CAF and immune cell transcriptomes in MEKi (trametinib)+STAT3i (ruxolitinib)-treated vs vehicle-treated Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) tumors were examined via single-cell RNA sequencing (scRNAseq). Clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats associated protein 9 silencing of CAF-restricted Map2k1/Mek1 or Stat3, or both, enabled interrogation of CAF-dependent effects on immunologic remodeling in orthotopic models. Tumor growth, survival, and immune profiling via mass cytometry by time-of-flight were examined in PKT mice treated with vehicle, anti-programmed cell death protein 1 (PD-1) monotherapy, and MEKi+STAT3i combined with anti-PD1. RESULTS: MEKi+STAT3i attenuates Il6/Cxcl1-expressing proinflammatory and Lrrc15-expressing myofibroblastic CAF phenotypes while enriching for Ly6a/Cd34-expressing CAFs exhibiting mesenchymal stem cell-like features via scRNAseq in PKT mice. This CAF plasticity is associated with M2-to-M1 reprogramming of tumor-associated macrophages, and enhanced trafficking of cluster of differentiation 8+ T cells, which exhibit distinct effector transcriptional programs. These MEKi+STAT3i-induced effects appear CAF-dependent, because CAF-restricted Mek1/Stat3 silencing mitigates inflammatory-CAF polarization and myeloid infiltration in vivo. Addition of MEKi+STAT3i to PD-1 blockade not only dramatically improves antitumor responses and survival in PKT mice but also augments recruitment of activated/memory T cells while improving their degranulating and cytotoxic capacity compared with anti-PD-1 monotherapy. Importantly, treatment of a patient who has chemotherapy-refractory metastatic PDAC with MEKi (trametinib), STAT3i (ruxolitinib), and PD-1 inhibitor (nivolumab) yielded clinical benefit. CONCLUSIONS: Combined MEKi+STAT3i mitigates stromal inflammation and enriches for CAF phenotypes with mesenchymal stem cell-like properties to overcome immunotherapy resistance in PDAC.


Asunto(s)
Adenocarcinoma , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Células Madre Mesenquimatosas , Neoplasias Pancreáticas , Ratones , Animales , Factor de Transcripción STAT3/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inmunoterapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Factores Inmunológicos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
13.
BMC Rheumatol ; 6(1): 32, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35698182

RESUMEN

BACKGROUND: We conducted this study to identify the influence of prolonged use of hydroxychloroquine (HCQ), glucocorticoids and other immunosuppressants (IS) on occurrence and outcome of COVID-19 in patients with autoimmune rheumatic diseases (AIRDs). METHODS: This was a prospective, multicenter, non-interventional longitudinal study across 15 specialist rheumatology centers. Consecutive AIRD patients on treatment with immunosuppressants were recruited and followed up longitudinally to assess parameters contributing to development of COVID-19 and its outcome. RESULTS: COVID-19 occurred in 314 (3.45%) of 9212 AIRD patients during a median follow up of 177 (IQR 129, 219) days. Long term HCQ use had no major impact on the occurrence or the outcome of COVID-19. Glucocorticoids in moderate dose (7.5-20 mg/day) conferred higher risk (RR = 1.72) of infection. Among the IS, Mycophenolate mofetil (MMF), Cyclophosphamide (CYC) and Rituximab (RTX) use was higher in patients with COVID 19. However, the conventional risk factors such as male sex (RR = 1.51), coexistent diabetes mellitus (RR = 1.64), pre-existing lung disease (RR = 2.01) and smoking (RR = 3.32) were the major contributing risk factors for COVID-19. Thirteen patients (4.14%) died, the strongest risk factor being pre-existing lung disease (RR = 6.36, p = 0.01). Incidence (17.5 vs 5.3 per 1 lakh (Karnataka) and 25.3 vs 7.9 per 1 lakh (Kerala)) and case fatality (4.1% vs 1.3% (Karnataka) and 4.3% vs 0.4% (Kerala)) rate of COVID-19 was significantly higher (p < 0.001) compared to the general population of the corresponding geographic region. CONCLUSIONS: Immunosuppressants have a differential impact on the risk of COVID-19 occurrence in AIRD patients. Older age, males, smokers, hypertensive, diabetic and underlying lung disease contributed to higher risk. The incidence rate and the case fatality rate in AIRD patients is much higher than that in the general population.

14.
Oncogene ; 41(28): 3640-3654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701533

RESUMEN

Co-occurrent KRAS and TP53 mutations define a majority of patients with pancreatic ductal adenocarcinoma (PDAC) and define its pro-metastatic proclivity. Here, we demonstrate that KRAS-TP53 co-alteration is associated with worse survival compared with either KRAS-alone or TP53-alone altered PDAC in 245 patients with metastatic disease treated at a tertiary referral cancer center, and validate this observation in two independent molecularly annotated datasets. Compared with non-TP53 mutated KRAS-altered tumors, KRAS-TP53 co-alteration engenders disproportionately innate immune-enriched and CD8+ T-cell-excluded immune signatures. Leveraging in silico, in vitro, and in vivo models of human and murine PDAC, we discover a novel intersection between KRAS-TP53 co-altered transcriptomes, TP63-defined squamous trans-differentiation, and myeloid-cell migration into the tumor microenvironment. Comparison of single-cell transcriptomes between KRAS-TP53 co-altered and KRAS-altered/TP53WT tumors revealed cancer cell-autonomous transcriptional programs that orchestrate innate immune trafficking and function. Moreover, we uncover granulocyte-derived inflammasome activation and TNF signaling as putative paracrine mediators of innate immunoregulatory transcriptional programs in KRAS-TP53 co-altered PDAC. Immune subtyping of KRAS-TP53 co-altered PDAC reveals conflation of intratumor heterogeneity with progenitor-like stemness properties. Coalescing these distinct molecular characteristics into a KRAS-TP53 co-altered "immunoregulatory program" predicts chemoresistance in metastatic PDAC patients enrolled in the COMPASS trial, as well as worse overall survival.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Humanos , Ratones , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Neoplasias Pancreáticas
15.
J Biol Chem ; 298(8): 102158, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724963

RESUMEN

Chaperones and other quality control machinery guard proteins from inappropriate aggregation, which is a hallmark of neurodegenerative diseases. However, how the systems that regulate the "foldedness" of the proteome remain buffered under stress conditions and in different cellular compartments remains incompletely understood. In this study, we applied a FRET-based strategy to explore how well quality control machinery protects against the misfolding and aggregation of "bait" biosensor proteins, made from the prokaryotic ribonuclease barnase, in the nucleus and cytosol of human embryonic kidney 293T cells. We found that those barnase biosensors were prone to misfolding, were less engaged by quality control machinery, and more prone to inappropriate aggregation in the nucleus as compared with the cytosol, and that these effects could be regulated by chaperone Hsp70-related machinery. Furthermore, aggregation of mutant huntingtin exon 1 protein (Httex1) in the cytosol appeared to outcompete and thus prevented the engagement of quality control machinery with the biosensor in the cytosol. This effect correlated with reduced levels of DNAJB1 and HSPA1A chaperones in the cell outside those sequestered to the aggregates, particularly in the nucleus. Unexpectedly, we found Httex1 aggregation also increased the apparent engagement of the barnase biosensor with quality control machinery in the nucleus suggesting an independent implementation of "holdase" activity of chaperones other than DNAJB1 and HSPA1A. Collectively, these results suggest that proteostasis stress can trigger a rebalancing of chaperone abundance in different subcellular compartments through a dynamic network involving different chaperone-client interactions.


Asunto(s)
Técnicas Biosensibles , Agregado de Proteínas , Citosol/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína
17.
Science ; 375(6581): eabf7470, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143312

RESUMEN

Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.


Asunto(s)
Linfocitos B/inmunología , Complemento C3/metabolismo , Células Dendríticas/inmunología , Tejido Linfoide/inmunología , Trogocitosis , Adulto , Animales , Presentación de Antígeno , Linfocitos B/metabolismo , Membrana Celular/metabolismo , Activación de Complemento , Complemento C3/inmunología , Células Dendríticas/metabolismo , Femenino , Antígenos HLA-D/inmunología , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores de Complemento 3d/inmunología , Receptores de Complemento 3d/metabolismo , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
J Hosp Infect ; 122: 173-179, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35124141

RESUMEN

BACKGROUND: An unprecedented rise in the number of COVID-19-associated mucormycosis (CAM) cases has been reported in India. Myriad hypotheses are proposed for the outbreak. We recently reported uncontrolled diabetes and inappropriate steroid therapy as significant risk factors for the outbreak. However, Mucorales contamination of hospital environment was not studied. AIM: To perform a multi-centre study across India to determine possible Mucorales contamination of hospital environment during the outbreak. METHODS: Eleven hospitals from four zones of India representing high to low incidence for mucormycosis cases were included in the study. Samples from a variety of equipment used by the patients and ambient air were collected during May 19th, 2021 through August 25th, 2021. FINDINGS: None of the hospital equipment sampled was contaminated with Mucorales. However, Mucorales were isolated from 11.1% air-conditioning vents and 1.7% of patients' used masks. Other fungi were isolated from 18% of hospital equipment and surfaces, and 8.1% of used masks. Mucorales grew from 21.7% indoor and 53.8% outdoor air samples. Spore counts of Mucorales in air were significantly higher in the hospitals of North and South zones compared to West and East zones (P < 0.0001). Among Mucorales isolated from the environment, Rhizopus spp. were the most frequent genus. CONCLUSION: Contamination of air-conditioning vents and hospital air by Mucorales was found. Presence of Mucorales in these areas demands regular surveillance and improvement of hospital environment, as contamination may contribute to healthcare-associated mucormycosis outbreaks, especially among immunocompromised patients.


Asunto(s)
COVID-19 , Mucorales , Mucormicosis , Brotes de Enfermedades , Hospitales , Humanos , India/epidemiología , Mucormicosis/epidemiología
19.
J Hosp Infect ; 123: 15-22, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35181400

RESUMEN

BACKGROUND: Despite rigorous disinfection and fumigation, healthcare-associated infection (HAI) remains a significant concern in healthcare settings. We have developed a novel airborne-microbicidal technology 'ZeBox' which clears >99.999% of airborne microbial load under controlled laboratory conditions. AIM: To evaluate the clinical performance of ZeBox in reducing airborne and surface microbial load. METHODS: The study was conducted in single-bed and multi-bed intensive care units (ICUs) of two hospitals. Airborne and surface microbial loads were sampled pre and post deployment of ZeBox at pre-determined sites. Statistical significance of the reduction was determined using the Mann-Whitney U-test. FINDINGS: ZeBox brought statistically significant reduction of both airborne and surface bacterial and fungal load. In both hospital ICUs, airborne and surface bacterial load decreased by 90% and 75% on average respectively, providing a low bioburden zone of 10-15 feet diameter around the unit. The reduced microbial level was maintained during ZeBox's operation over several weeks. Most clinical bacterial isolates recovered from one of the hospitals were antibiotic resistant, highlighting ZeBox's ability to eliminate antimicrobial-resistant bacteria among others. CONCLUSION: ZeBox significantly reduces airborne and surface microbial burden in clinical settings. It thereby serves an unmet need for reducing the incidence of HAI.


Asunto(s)
Microbiología del Aire , Infección Hospitalaria , Bacterias , Infección Hospitalaria/prevención & control , Descontaminación , Desinfección , Humanos , Tecnología
20.
J Nutr Metab ; 2022: 2661912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036004

RESUMEN

Loss of appetite (LOA) may have a negative impact on a patient's well-being owing to loss of nutrition and associated conditions. The current study assessed the effects of an appetite-stimulating medication containing multivitamins, lysine, and zinc in Indian patients with a history of LOA. Using an investigator-initiated, single-center, open-label, single-arm design, we evaluated the effectiveness and safety of the appetite-stimulating medication (15 mL) in 50 male or female patients (18-55 years old) attending the outpatient department, with a confirmed diagnosis of LOA after two weeks of therapy and assessed the change in Council on Nutrition Appetite Questionnaire (CNAQ) score and safety of the medication after two weeks of treatment. CNAQ scores were presented as mean (standard deviation (SD)). The mean age of patients was 42.1 years, with the majority (66%) being males. At weeks 1 and 2, a statistically significant improvement was observed in the mean CNAQ scores of 25.48 (5.10) and 25.48 (4.29), respectively, vs. baseline (22.08 (2.76); P ≤ 0.0001 both). Majority of the patients had CNAQ appetite scores of 17-28 at baseline (94%), week 1 (66%), and week 2 (78%) of treatment. For patients with acute and chronic illness, a statistically significant improvement was observed in the mean CNAQ score at week 1 (26.75 (3.69), P = 0.0256; 25.24 (5.33), P = 0.0004) and at week 2 (26.63 (3.46), P = 0.0027; 25.26 (4.43), P ≤ 0.0001) from baseline (21.88 (3.31) and 22.12 (2.69), respectively). No serious adverse events were reported during the study. The study findings suggest that appetite-stimulating medication containing multivitamins, lysine, and zinc could be a suitable treatment option for the management of LOA with no significant safety concerns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...