Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(40): 23083-23098, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33048077

RESUMEN

Recent advances in quantum technologies have enabled the precise control of single trapped molecules on the quantum level. Exploring the scope of these new technologies, we studied theoretically the implementation of qubits and clock transitions in the spin, rotational, and vibrational degrees of freedom of molecular nitrogen ions including the effects of magnetic fields. The relevant spectroscopic transitions span six orders of magnitude in frequency, illustrating the versatility of the molecular spectrum for encoding quantum information. We identified two types of magnetically insensitive qubits with very low ("stretched"-state qubits) or even zero ("magic" magnetic-field qubits) linear Zeeman shifts. The corresponding spectroscopic transitions are predicted to shift by as little as a few mHz for an amplitude of magnetic-field fluctuations on the order of a few mG, translating into Zeeman-limited coherence times of tens of minutes encoded in the rotations and vibrations of the molecule. We also found that the Q(0) line of the fundamental vibrational transition is magnetic-dipole allowed by interaction with the first excited electronic state of the molecule. The Q(0) transitions, which benefit from small systematic shifts for clock operation and is thus well suited for testing a possible variation in the proton-to-electron mass ratio, were so far not considered in single-photon spectra. Finally, we explored possibilities to coherently control the nuclear-spin configuration of N2+ through the magnetically enhanced mixing of nuclear-spin states.

2.
Nat Commun ; 11(1): 4470, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901016

RESUMEN

Quantum-logic techniques used to manipulate quantum systems are now increasingly being applied to molecules. Previous experiments on single trapped diatomic species have enabled state detection with excellent fidelities and highly precise spectroscopic measurements. However, for complex molecules with a dense energy-level structure improved methods are necessary. Here, we demonstrate an enhanced quantum protocol for molecular state detection using state-dependent forces. Our approach is based on interfering a reference and a signal force applied to a single atomic and molecular ion. By changing the relative phase of the forces, we identify states embedded in a dense molecular energy-level structure and monitor state-to-state inelastic scattering processes. This method can also be used to exclude a large number of states in a single measurement when the initial state preparation is imperfect and information on the molecular properties is incomplete. While the present experiments focus on N[Formula: see text], the method is general and is expected to be of particular benefit for polyatomic systems.

3.
Science ; 367(6483): 1213-1218, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32165581

RESUMEN

Trapped atoms and ions, which are among the best-controlled quantum systems, find widespread applications in quantum science. For molecules, a similar degree of control is currently lacking owing to their complex energy-level structure. Quantum-logic protocols in which atomic ions serve as probes for molecular ions are a promising route for achieving this level of control, especially for homonuclear species that decouple from blackbody radiation. Here, a quantum-nondemolition protocol on single trapped [Formula: see text] molecules is demonstrated. The spin-rovibronic state of the molecule is detected with >99% fidelity, and a spectroscopic transition is measured without destroying the quantum state. This method lays the foundations for new approaches to molecular spectroscopy, state-to-state chemistry, and the implementation of molecular qubits.

4.
Faraday Discuss ; 217(0): 561-583, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31041946

RESUMEN

We present theoretical and experimental progress towards a new approach for the precision spectroscopy, coherent manipulation and state-to-state chemistry of single isolated molecular ions in the gas phase. Our method uses a molecular beam for creating packets of rotationally cold neutrals from which a single molecule is state-selectively ionized and trapped inside a radiofrequency ion trap. In addition to the molecular ion, a single co-trapped atomic ion is used to cool the molecular external degrees of freedom to the ground state of the trap and to detect the molecular state using state-selective coherent motional excitation from a modulated optical-dipole force acting on the molecule. We present a detailed discussion and theoretical characterization of the present approach. We simulate the molecular signal experimentally using a single atomic ion, indicating that different rovibronic molecular states can be resolved and individually detected with our method. The present approach for the coherent control and non-destructive detection of the quantum state of a single molecular ion opens up new perspectives for precision spectroscopies relevant for, e.g., tests of fundamental physical theories and the development of new types of clocks based on molecular vibrational transitions. It will also enable the observation and control of chemical reactions of single particles on the quantum level. While focusing on N2+ as a prototypical example in the present work, our method is applicable to a wide range of diatomic and polyatomic molecules.

5.
Phys Chem Chem Phys ; 17(38): 24732-7, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26235429

RESUMEN

Inverse internal conversion followed by recurrent fluorescence was observed as a fast decay (10 µs range) in the time profile of neutral yields from photo-excited C4(-) molecular ions. We also elucidated the contribution of such electronic radiative cooling to the C4(-) ions with internal energy far below the detachment threshold by an alternative novel approach, observing the laser wavelength and storage time dependence (ms range) of the total yield of the photo-induced neutrals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA