Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 104(2-2): 025005, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525670

RESUMEN

Hand-crumpled paper balls involve intricate structure with a network of creases and vertices, yet show simple scaling properties, which suggests self-similarity of the structure. We investigate the internal structure of crumpled papers by the microcomputed tomography (micro-CT) without destroying or unfolding them. From the reconstructed three-dimensional (3D) data, we examine several power laws for the crumpled square sheets of paper of the sizes L=50-300 mm and obtain the mass fractal dimension D_{M}=2.7±0.1 by the relation between the mass and the radius of gyration of the balls and the fractal dimension 2.5≲d_{f}≲2.8 for the internal structure of each crumpled paper ball by the box counting method in the real space and the structure factors in the Fourier space. The data for the paper sheets are consistent with D_{M}=d_{f}, suggesting that the self-similarity in the structure of each crumpled ball gives rise to the similarity among the balls with different sizes. We also examine the cellophane sheets and the aluminium foils of the size L=200 mm and obtain 2.6≲d_{f}≲2.8 for both of them. The micro-CT also allows us to reconstruct 3D structure of a line drawn on the crumpled sheets of paper. The Hurst exponent for the root-mean-square displacement along the line is estimated as H≈0.9 for the length scale shorter than the scale of the radius of gyration, beyond which the line structure becomes more random with H∼0.5.

2.
Phys Rev E ; 101(1-1): 012903, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32069671

RESUMEN

It has been observed that the direction in which a sand dune extends its crest line depends on seasonal variation of wind direction; when the variation is small, the crest line develops more or less perpendicularly to the mean wind direction to form a transverse dune with some undulation. In the case of bimodal wind with a large relative angle, however, the dune extends its crest along the mean wind direction and evolves into an almost straight longitudinal dune. Motivated by these observations, we investigate the dynamical stability of isolated dunes using the crest line model, where the dune dynamics is represented by its crest line motion. First, we extend the previous linear stability analysis under the unidirectional wind to the case with nonzero slant angle between the wind direction and the normal direction of the crest line, and show that the stability diagram does not depend on the slant angle. Second, we examine how the linear stability is affected by the seasonal changes of wind direction in the case of bimodal wind with equal strength and duration. For the transverse dune, we find that the stability is virtually the same with that for the unidirectional wind as long as the dune evolution during a season is small. On the other hand, in the case of the longitudinal dune, the dispersions of the growth rates for the perturbation are drastically different from those of the unidirectional wind, and we find that the largest growth rate is always located at k=0. This is because the growth of the perturbation with k≠0 is canceled by the alternating wind from opposite sides of the crest line even though it grows during each duration period of the bimodal wind. For a realistic parameter set, the system is in the wavy unstable regime of the stability diagram for the unidirectional wind, thus the straight transverse dune is unstable to develop undulation and eventually evolves into a string of barchans when the seasonal variation of wind direction is small, but the straight longitudinal dune is stabilized under the large variation of bimodal wind direction. We also perform numerical simulations on the crest line model, and find that the results are consistent with our linear analysis and the previous reports that show that the longitudinal dunes tend to have a straight ridge elongating over time.

3.
Phys Rev E ; 97(3-2): 039901, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776033

RESUMEN

This corrects the article DOI: 10.1103/PhysRevE.94.062614.

4.
Phys Rev E ; 95(6-1): 062207, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709277

RESUMEN

A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal t_{r} [Proc. R. Soc. Lond. A 418, 165 (1988)1364-502110.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for t_{r} by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

5.
Phys Rev E ; 95(5-1): 052502, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28618466

RESUMEN

Configurations of a single semiflexible polymer is studied when it is pushed into a nanochannel in the case where the polymer persistence length l_{p} is much longer than the channel diameter D:l_{p}/D≫1. Using numerical simulations, we show that the polymer undergoes a sequence of recurring structural transitions upon longitudinal compression: random deflection along the channel, a helix going around the channel wall, double-fold random deflection, double-fold helix, etc. We find that the helix transition can be understood as buckling of deflection segments, and the initial helix formation takes place at very small compression with no appreciable weak compression regime of the random deflection polymer.

6.
Phys Rev E ; 94(6-1): 062614, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085431

RESUMEN

We perform experiments and numerical simulations to investigate spatial distribution of pressure in a sheared dilatant fluid of the Taylor-Couette flow under a constant external shear stress. In a certain range of shear stress, the flow undergoes the shear thickening oscillation around 20 Hz. We find that, during the oscillation, a localized thickened band rotates around the axis with the flow. Based upon experiments and numerical simulations, we show that a major part of the thickened band is under negative pressure even in the case of discontinuous shear thickening, which indicates that the thickening is caused by Reynolds dilatancy; the dilatancy causes the negative pressure in interstitial fluid, which generates contact structure in the granular medium, then frictional resistance hinders rearrangement of the structure and solidifies the medium.

8.
Sci Rep ; 5: 8046, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623086

RESUMEN

When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 µm; ii) they levitate above the water surface by 10 ~ 100 µm; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

9.
J Chem Phys ; 139(21): 214105, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24320362

RESUMEN

Using the Hamilton-Jacobi method, we solve chemical Fokker-Planck equations within the Gaussian approximation and obtain a simple and compact formula for a conditional probability distribution. The formula holds in general transient situations, and can be applied not only to a steady state but also to an oscillatory state. By analyzing the long time behavior of the solution in the oscillatory case, we obtain the phase diffusion constant along the periodic orbit and the steady distribution perpendicular to it. A simple method for numerical evaluation of these formulas are devised, and they are compared with Monte Carlo simulations in the case of Brusselator as an example. Some results are shown to be identical to previously obtained expressions.

10.
Artículo en Inglés | MEDLINE | ID: mdl-23679401

RESUMEN

We study inelastic collapse in a one-dimensional N-particle system when the system is driven from below under gravity. We investigate the hard-sphere limit of inelastic soft-sphere systems by numerical simulations to find how the collision rate per particle n(coll) increases as a function of the elastic constant of the sphere k when the restitution coefficient e is kept constant. For systems with large enough N>/~20, we find three regimes in e depending on the behavior of n(coll) in the hard-sphere limit: (i) an uncollapsing regime for 1≥e>e(c1), where n(coll) converges to a finite value, (ii) a logarithmically collapsing regime for e(c1)>e>e(c2), where n(coll) diverges as n(coll)~logk, and (iii) a power-law collapsing regime for e(c2)>e>0, where n(coll) diverges as n(coll)~k(α) with an exponent α that depends on N. The power-law collapsing regime shrinks as N decreases and seems not to exist for the system with N=3, while, for large N, the size of the uncollapsing and the logarithmically collapsing regime decreases as e(c1)=/~1-2.6/N and e(c2)=/~1-3.0/N. We demonstrate that this difference between large and small systems exists already in the inelastic collapse without external drive and gravity.

11.
PLoS One ; 8(4): e60938, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593354

RESUMEN

Some biochemical systems show oscillation. They often consist of feedback loops with repressive transcription regulation. Such biochemical systems have distinctive characteristics in comparison with ordinary chemical systems: i) numbers of molecules involved are small, ii) there are typically only a couple of genes in a cell with a finite regulation time. Due to the fluctuations caused by these features, the system behavior can be quite different from the one by deterministic rate equations, because the rate equations ignore molecular fluctuations and thus are exact only in the infinite molecular number limit. The molecular fluctuations on a free-running circadian system have been studied by Gonze et al. (2002) by introducing a scale parameter [Formula: see text] for the system size. They consider, however, only the first effect, assuming that the gene process is fast enough for the second effect to be ignored, but this has not been examined systematically yet. Here we study fluctuation effects due to the finite gene regulation time by introducing a new scale parameter [Formula: see text], which we take as the unbinding time of a nuclear protein from the gene. We focus on the case where the fluctuations due to small molecular numbers are negligible. In simulations on the same system studied by Gonze et al., we find the system is unexpectedly sensitive to the fluctuation in the transcription regulation; the period of oscillation fluctuates about 30 min even when the regulation time scale [Formula: see text] is around 30 s, that is even smaller than 1/1000 of its circadian period. We also demonstrate that the distribution width for the oscillation period and amplitude scales with [Formula: see text], and the correlation time scales with [Formula: see text] in the small [Formula: see text] regime. The relative fluctuations for the period are about half of that for the amplitude, namely, the periodicity is more stable than the amplitude.


Asunto(s)
Fenómenos Bioquímicos , Transcripción Genética , Ritmo Circadiano/genética , Simulación por Computador , Citosol/metabolismo , Modelos Biológicos , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
12.
PLoS One ; 8(11)2013.
Artículo en Inglés | MEDLINE | ID: mdl-29161728

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0060938.].

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 1): 011401, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400567

RESUMEN

A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two-dimensional systems.


Asunto(s)
Coloides/química , Mezclas Complejas/química , Microfluídica/métodos , Modelos Químicos , Modelos Moleculares , Simulación por Computador
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 066116, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21797450

RESUMEN

Cultural competition has throughout our history shaped and reshaped the geography of boundaries between humans. Language and culture are intimately connected and linguists often use distinctive keywords to quantify the dynamics of information spreading in societies harboring strong culture centers. One prominent example, which is addressed here, is Kyoto's historical impact on Japanese culture. We construct a minimal model, based on shared properties of linguistic maps, to address the interplay between information flow and geography. We show that spreading of information over Japan in the premodern time can be described by an Eden growth process with noise levels corresponding to coherent spatial patches of sizes given by a single day's walk (~15 km), and that new words appear in Kyoto at times comparable to the time between human generations (~30 yr).

15.
J Mol Biol ; 394(1): 15-28, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19747486

RESUMEN

The lytic-lysogenic switch of the temperate lactococcal phage TP901-1 is fundamentally different from that of phage lambda. In phage TP901-1, the lytic promoter P(L) is repressed by CI, whereas repression of the lysogenic promoter P(R) requires the presence of both of the antagonistic regulator proteins, MOR and CI. We model the central part of the switch and compare the two cases for P(R) repression: the one where the two regulators interact only on the DNA and the other where the two regulators form a heteromer complex in the cytoplasm prior to DNA binding. The models are analyzed for bistability, and the predicted promoter repression folds are compared to experimental data. We conclude that the experimental data are best reproduced the latter case, where a heteromer complex forms in solution. We further find that CI sequestration by the formation of MOR:CI complexes in cytoplasm makes the genetic switch robust.


Asunto(s)
Bacteriófagos/genética , Genes Virales , Lisogenia/fisiología , Modelos Genéticos , Multimerización de Proteína , Proteínas Virales/metabolismo , Activación Viral/fisiología , Lisogenia/genética , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo , Proteínas Virales/química , Activación Viral/genética
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 1): 050102, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20364936

RESUMEN

We numerically study the Loewner driving function Ut of a site percolation cluster boundary on the triangular lattice for ppc.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Estadísticos , Simulación por Computador , Difusión , Transición de Fase
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 1): 051804, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20364998

RESUMEN

We study the configurational properties of single polymers in a theta solvent by Monte Carlo simulation of the bond fluctuation model. The intramolecular structure factor at the theta point is found to be distinctively different from that of the ideal chain. The structure factor shows a hump around q approximately 5/Rg and a dip around q approximately 10/Rg in the Kratky plot with Rg being the radius of gyration. This feature is apparently similar to that in a melt. The theoretical expression by the simple perturbation expansion to the first order in terms of the Mayer function can be fitted to the obtained structure factor quite well, but the second virial coefficient cannot be set to zero.


Asunto(s)
Modelos Químicos , Polímeros/química , Soluciones/química , Solventes/química , Simulación por Computador
18.
Biophys J ; 95(9): 4228-40, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18658208

RESUMEN

Transcription is regulated through interplay among transcription factors, an RNA polymerase (RNAP), and a promoter. Even for a simple repressive transcription factor that disturbs promoter activity at initial binding of RNAP, its repression level is not determined solely by the dissociation constant of transcription factor but is sensitive to timescales of processes in RNAP. We first analyze the promoter activity under strong repression by a slow binding repressor, in which case transcription events occur in bursts, followed by long quiescent periods while a repressor binds to the operator; the number of transcription events, bursting, and quiescent times are estimated by reaction rates. We then examine interference effect from an opposing promoter, using the correlation function of initiation events for a single promoter. The interference is shown to de-repress the promoter because RNAPs from the opposing promoter most likely encounter the repressor and remove it in case of strong repression. This de-repression mechanism should be especially prominent for the promoters that facilitate fast formation of open complex with the repressor whose binding rate is slower than approximately 1/s. Finally, we discuss possibility of this mechanism for high activity of promoter PR in the hyp-mutant of lambda-phage.


Asunto(s)
Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Biológicos , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética
19.
J Phys Chem B ; 112(5): 1487-93, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18189378

RESUMEN

It has been found in in vitro experiments that cytoskeletal filaments driven by molecular motors show finite diffusion in sliding motion even in the long filament limit [Imafuku, Y. et al. Biophys. J. 1996, 70, 878-886. Noda, N. et al. Biophysics 2005, 1, 45-53]. This anomalous fluctuation can be evidence for cooperativity among the motors in action because fluctuation should be averaged out for a long filament if the action of each motor is independent. In order to understand the nature of the fluctuation in molecular motors, we perform numerical simulations and analyze velocity correlation in three existing models that are known to show some kind of cooperativity and/or large diffusion coefficient, i.e., the Sekimoto-Tawada model [Sekimoto, K.; Tawada, K. Phys. Rev. Lett. 1995, 75, 180], the Prost model [Prost, J. et al. Phys. Rev. Lett. 1994, 72, 2652], and the Duke model [Duke, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2770]. It is shown that the Prost model and the Duke model do not give a finite diffusion in the long filament limit, in spite of the collective action of motors. On the other hand, the Sekimoto-Tawada model has been shown to give a diffusion coefficient that is independent of filament length, but it comes from the long time correlation whose time scale is proportional to filament length, and our simulations show that such a long correlation time conflicts with the experimental time scales. We conclude that none of the three models represent experimental findings. In order to explain the observed anomalous diffusion, we have to search for a mechanism that will allow both the amplitude and the time scale of the velocity correlation to be independent of the filament length.


Asunto(s)
Citoesqueleto/química , Adenosina Trifosfato/química , Algoritmos , Simulación por Computador , Difusión , Hidrólisis , Cinética , Modelos Químicos , Modelos Estadísticos , Miosinas/química , Miosinas/metabolismo
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 1): 031305, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17500691

RESUMEN

We study the effect of precollisional velocity correlations on granular shear flow by molecular dynamics simulations of an inelastic hard sphere system. Comparison of the simulations with kinetic theory reveals that the theory overestimates both the energy dissipation rate and the normal stress in the dense flow region. We find that the relative normal velocity of colliding particles is smaller than that expected from random collisions, and the discrepancies in the dissipation and the normal stress can be adjusted by introducing the idea of the collisional temperature, from which we conclude that the velocity correlation neglected in the kinetic theory is responsible for the discrepancies. Our analysis of the distributions of the precollisional velocity suggests that the correlation grows through multiple inelastic collisions during the time scale of the inverse of the shear rate. As for the shear stress, the discrepancy is also found in the dense region, but it depends strongly on the particle inelasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA