Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 11(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34442334

RESUMEN

Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could be caused by genetic polymorphisms. Therefore, we functionally characterized 21 novel CYP1A2 variants identified in 4773 Japanese individuals by determining the kinetic parameters of phenacetin O-deethylation. Our results showed that most of the evaluated variants exhibited decreased or no enzymatic activity, which may be attributed to potential structural alterations. Notably, the Leu98Gln, Gly233Arg, Ser380del Gly454Asp, and Arg457Trp variants did not exhibit quantifiable enzymatic activity. Additionally, three-dimensional (3D) docking analyses were performed to further understand the underlying mechanisms behind variant pharmacokinetics. Our data further suggest that despite mutations occurring on the protein surface, accumulating interactions could result in the impairment of protein function through the destabilization of binding regions and changes in protein folding. Therefore, our findings provide additional information regarding rare CYP1A2 genetic variants and how their underlying effects could clarify discrepancies noted in previous phenotypical studies. This would allow the improvement of personalized therapeutics and highlight the importance of identifying and characterizing rare variants.

3.
Sci Rep ; 10(1): 14193, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843676

RESUMEN

The evaluation of Cytochrome P450 (CYP) enzymatic activity is essential to estimate drug pharmacokinetics. Numerous CYP allelic variants have been identified; the functional characterisation of these variants is required for their application in precision medicine. Results from heterologous expression systems using mammalian cells can be integrated in in vivo studies; however, other systems such as E. coli, bacteria, yeast, and baculoviruses are generally used owing to the difficulty in expressing high CYP levels in mammalian cells. Here, by optimising transfection and supplementing conditions, we developed a heterologous expression system using 293FT cells to evaluate the enzymatic activities of three CYP isoforms (CYP1A2, CYP2C9, and CYP3A4). Moreover, we established co-expression with cytochrome P450 oxidoreductase and cytochrome b5. This expression system would be a potential complementary or beneficial alternative approach for the pharmacokinetic evaluation of clinically used and developing drugs in vitro.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Ingeniería Genética/métodos , Proteínas Recombinantes/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Expresión Génica/genética , Expresión Génica/fisiología , Células HEK293/metabolismo , Humanos , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidación-Reducción , Isoformas de Proteínas , Transfección/métodos
4.
Drug Metab Dispos ; 46(8): 1083-1090, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29769267

RESUMEN

Dihydropyrimidine dehydrogenase (DPD, EC 1.3.1.2), encoded by the DPYD gene, is the rate-limiting enzyme in the degradation pathway of endogenous pyrimidine and fluoropyrimidine drugs such as 5-fluorouracil (5-FU). DPD catalyzes the reduction of uracil, thymine, and 5-FU. In Caucasians, DPYD mutations, including DPYD*2A, DPYD*13, c.2846A>T, and c.1129-5923C>G/hapB3, are known to contribute to interindividual variations in the toxicity of 5-FU; however, none of these DPYD polymorphisms has been identified in the Asian population. Recently, 21 DPYD allelic variants, including some novel single-nucleotide variants (SNVs), were identified in 1070 healthy Japanese individuals by analyzing their whole-genome sequences (WGSs), but the functional alterations caused by these variants remain unknown. In this study, in vitro analysis was performed on 22 DPD allelic variants by transiently expressing wild-type DPD and 21 DPD variants in 293FT cells and characterizing their enzymatic activities using 5-FU as a substrate. DPD expression levels and dimeric forms were determined using immunoblotting and blue-native PAGE, respectively. Additionally, the values of three kinetic parameters-the Michaelis constant (Km ), maximum velocity (Vmax ), and intrinsic clearance (CLint = Vmax/Km )-were determined for the reduction of 5-FU. Eleven variants exhibited significantly decreased intrinsic clearance compared with wild-type DPD. Moreover, the band patterns observed in the immunoblots of blue-native gels indicated that DPD dimerization is required for enzymatic activity in DPD. Thus, the detection of rare DPYD variants might facilitate severe adverse effect prediction of 5-FU-based chemotherapy in the Japanese population.


Asunto(s)
Pueblo Asiatico/genética , Dihidrouracilo Deshidrogenasa (NADP)/genética , Polimorfismo Genético/genética , Alelos , Antimetabolitos Antineoplásicos/metabolismo , Línea Celular , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Fluorouracilo/metabolismo , Células HEK293 , Humanos , Polimorfismo Genético/efectos de los fármacos , Pirimidinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...