Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125784

RESUMEN

Salt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition of wheat under salt stress, contains metabolites related to flavonoid biosynthesis. Wheat was treated with PDS solution under salt stress and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins were associated with protein metabolism and signal transduction in biological processes, as well as mitochondrion, endoplasmic reticulum/Golgi, and plasma membrane in cellular components with PDS solution under salt stress compared to control. Using immuno-blot analysis, proteomic results confirmed that ascorbate peroxidase increased with salt stress and decreased with additional PDS solution; however, H+-ATPase displayed opposite effects. Ubiquitin increased with salt stress and decreased with additional PDS solution; nevertheless, genomic DNA did not change. As part of mitochondrion-related events, the contents of ATP increased with salt stress and recovered with additional PDS solution. These results suggest that PDS solution enhances wheat growth suppressed by salt stress through the regulation of energy metabolism and the ubiquitin-proteasome system related to flavonoid metabolism.


Asunto(s)
Proteínas de Plantas , Proteómica , Estrés Salino , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Proteómica/métodos , Proteínas de Plantas/metabolismo , Metabolómica/métodos , Humo/efectos adversos , Proteoma/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
2.
Drug Metab Pharmacokinet ; 57: 101025, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068856

RESUMEN

Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib. To obtain a hint which may help to clarify the cause of nintedanib-induced liver injury, we investigated whether iminium ions were formed in the human liver. To detect unstable iminium ions using liquid chromatography-tandem mass spectrometry (LC-MS/MS), potassium cyanide was added to the reaction mixture as a trapping agent. Human liver and intestinal microsomes were incubated with nintedanib in the presence of NADPH to form two iminium ion metabolites on the piperazine ring. Their formation is strongly inhibited by ketoconazole, a potent cytochrome P450 (CYP) 3A4 inhibitor. Among the recombinant P450s, only CYP3A4 formed cyanide adducts. The role of CYP3A4 was supported by the positive correlation between CYP3A4 protein abundance, as determined by LC-MS-based proteomics, and the formation of cyanide adducts in 25 individual human liver microsomes. In conclusion, we have demonstrated that iminium ion metabolites are formed from nintedanib by CYP3A4 as potential reactive metabolites.


Asunto(s)
Citocromo P-450 CYP3A , Indoles , Humanos , Indoles/metabolismo , Indoles/farmacología , Indoles/química , Citocromo P-450 CYP3A/metabolismo , Iminas/metabolismo , Iminas/farmacología , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Espectrometría de Masas en Tándem , Iones/metabolismo
3.
Drug Metab Dispos ; 52(9): 949-956, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38866474

RESUMEN

The role of the kidney as an excretory organ for exogenous and endogenous compounds is well recognized, but there is a wealth of data demonstrating that the kidney has significant metabolizing capacity for a variety of exogenous and endogenous compounds that in some cases surpass the liver. The induction of drug-metabolizing enzymes by some chemicals can cause drug-drug interactions and intraindividual variability in drug clearance. In this study, we evaluated the expression and induction of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) isoforms in 3D-cultured primary human renal proximal tubule epithelial cells (RPTEC) to elucidate their utility as models of renal drug metabolism. CYP2B6, CYP2E1, CYP3A4, CYP3A5, and all detected UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) mRNA levels in 3D-RPTEC were significantly higher than those in 2D-RPTEC and HK-2 cells and were close to the levels in the human kidney cortex. CYP1B1 and CYP2J2 mRNA levels in 3D-RPTEC were comparable to those in 2D-RPTEC, HK-2 cells, and the human kidney cortex. Midazolam 1'-hydroxylation, trifluoperazine N-glucuronidation, serotonin O-glucuronidation, propofol O-glucuronidation, and morphine 3-glucuronidation in the 3D-RPTEC were significantly higher than the 2D-RPTEC and comparable to those in the HepaRG cells, although bupropion, ebastine, and calcitriol hydroxylations were not different between the 2D- and 3D-RPTEC. Treatment with ligands of the aryl hydrocarbon receptor and farnesoid X receptor induced CYP1A1 and UGT2B4 expression, respectively, in 3D-RPTEC compared with 2D-RPTEC. We provided information on the expression, activity, and induction abilities of P450s and UGTs in 3D-RPTEC as an in vitro human renal metabolism model. SIGNIFICANCE STATEMENT: This study demonstrated that the expression of cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) in 3D-cultured primary human renal proximal tubule epithelial cells (3D-RPTEC) was higher than those in 2D-cultured primary human renal proximal tubule epithelial cells and HK-2 cells. The results were comparable to that in the human kidney cortex. 3D-RPTEC are useful for evaluating the induction of kidney P450s, UDP-glucuronosyltransferases, and human renal drug metabolism in cellulo.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Células Epiteliales , Glucuronosiltransferasa , Túbulos Renales Proximales , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Células Cultivadas , Inducción Enzimática/efectos de los fármacos , Línea Celular , Técnicas de Cultivo de Célula/métodos , ARN Mensajero/metabolismo , ARN Mensajero/genética
4.
Drug Metab Pharmacokinet ; 56: 101007, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797091

RESUMEN

Arylacetamide deacetylase (AADAC) is involved in drug hydrolysis and lipid metabolism. In 23 human liver samples, no significant correlation was observed between AADAC mRNA (19.7-fold variation) and protein levels (137.6-fold variation), suggesting a significant contribution of post-transcriptional regulation to AADAC expression. The present study investigated whether AADAC is regulated by microRNA in the human liver and elucidate its biological significance. Computational analysis predicted two potential miR-222-3p recognition elements in the 3'-untranslated region (UTR) of AADAC. Luciferase assay revealed that the miR-222-3p recognition element was functional in downregulating AADAC expression. In HEK293 cells transfected with an AADAC expression plasmid containing 3'-UTR, miR-222-3p overexpression decreased AADAC protein level and activity, whereas miR-222-3p inhibition increased them. Similar results were observed in human hepatoma-derived Huh-1 cells endogenously expressing AADAC and HepaSH cells that are hepatocytes from chimeric mice with humanized livers. In individual human liver samples, AADAC protein levels inversely correlated with miR-222-3p levels. Overexpression of miR-222-3p resulted in increased lipid accumulation in Huh-1 cells, which was reversed by AADAC overexpression. In contrast, miR-222-3p inhibition decreased lipid accumulation, which was reversed by AADAC knockdown. In conclusion, we found that hepatic AADAC was downregulated by miR-222-3p, resulting in decreased drug hydrolysis and increased lipid accumulation.


Asunto(s)
Regulación hacia Abajo , Metabolismo de los Lípidos , MicroARNs , Animales , Humanos , Ratones , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Hidrolasas de Éster Carboxílico , Células HEK293 , Hidrólisis , Metabolismo de los Lípidos/genética , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
5.
J Clin Med ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792317

RESUMEN

Background: Despite the encouragement of early initiation and titration of guideline-directed medical therapy (GDMT) for the treatment of heart failure (HF), most patients do not receive an adequate type and dose of pharmacotherapy in the real world. Objectives: This study aimed to determine the efficacy of titrating composite GDMT in patients with HF with reduced and mildly reduced ejection fraction and to identify patient conditions that may benefit from titration of GDMT. Methods: This was a two-center, retrospective study of consecutive patients hospitalized with acute decompensated heart failure (ADHF). Patients were classified into two groups according to a scoring scale determined by combination and doses of four types of HF agents (ACEis/ARBs/ARNis, BBs, MRAs, and SGLT2is) at discharge. A score of 5 or greater was defined as titrated GDMT, and a score of 4 or less was regarded as sub-optimal medical therapy (MT). Results: A total of 979 ADHF patients were screened. After 553 patients were excluded based on exclusion criteria, 426 patients (90 patients in the titrated GDMT group and 336 patients in the sub-optimal MT group) were enrolled for the analysis. The median follow-up period was 612 (453-798) days. Following statistical adjustment using the propensity score weighting method, the 2-year composite endpoint (composite of cardiac death and HF rehospitalization) rate was significantly lower in the titrated GDMT group, at 19%, compared with the sub-optimal MT group: 31% (score 3-4 points) and 43% (score 0-2 points). Subgroup analysis indicated a marked benefit of titrated GDMT in particular patient subgroups: age < 80 years, BMI 19.0-24.9, eGFR > 20 mL/min/1.73 m2, and serum potassium level ≤ 5.5 mmol/L. Conclusions: Prompt initiation and dose adjustment of multiple HF medications, with careful monitoring of the patient's physiologic and laboratory values, is a prerequisite for improving the prognosis of patients with heart failure.

6.
Biochem Pharmacol ; 215: 115733, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543347

RESUMEN

Pregnane X receptor (PXR) is one of the key regulators of drug metabolism, gluconeogenesis, and lipid synthesis in the human liver. Activation of PXR by drugs such as rifampicin, simvastatin, and efavirenz causes adverse reactions such as drug-drug interaction, hyperglycemia, and dyslipidemia. The inhibition of PXR activation has merit in preventing such adverse events. Here, we demonstrated that bromodomain containing protein 9 (BRD9), a component of non-canonical brahma-related gene 1-associated factor (ncBAF), one of the chromatin remodelers, interacts with PXR. Rifampicin-mediated induction of CYP3A4 expression was attenuated by iBRD9, an inhibitor of BRD9, in human primary hepatocytes and CYP3A/PXR-humanized mice, indicating that BRD9 enhances the transcriptional activation of PXR in vitro and in vivo. Chromatin immunoprecipitation assay reveled that iBRD9 treatment resulted in attenuation of the rifampicin-mediated binding of PXR to the CYP3A4 promoter region, suggesting that ncBAF functions to facilitate the binding of PXR to its response elements. Efavirenz-induced hepatic lipid accumulation was attenuated by iBRD9 in C57BL/6J mice, suggesting that the inhibition of BRD9 would be useful to reduce the risk of efavirenz-induced hepatic steatosis. Collectively, we found that inhibitors of BRD9, a component of ncBAF that plays a role in assisting transactivation by PXR, would be useful to reduce the risk of PXR-mediated adverse reactions.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Ratones , Animales , Receptor X de Pregnano/genética , Activación Transcripcional , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampin/farmacología , Ratones Endogámicos C57BL , Hígado/metabolismo , Hepatocitos/metabolismo , Lípidos , Factores de Transcripción/metabolismo
7.
Int Heart J ; 64(4): 535-542, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37460322

RESUMEN

Rapid reperfusion by primary percutaneous coronary intervention (pPCI) is an established strategy for the treatment of patients with ST-segment elevation myocardial infarction (STEMI). Pre-hospital electrocardiogram (PH-ECG) transmission by the emergency medical services (EMS) facilitates timely reperfusion in these patients. However, evidence regarding the clinical benefits of PH-ECG in individual hospitals is limited.This retrospective, observational study investigated the clinical efficacy of PH-ECG in STEMI patients who underwent pPCI. Of a total of 382 consecutive STEMI patients, 237 were enrolled in the study and divided into 2 groups: a PH-ECG group (n = 77) and non-PH-ECG group (n = 160). Door-to-balloon time (D2BT) was significantly shorter in the PH-ECG group (66 [52-80] min), compared to the non-PH-ECG group (70 [57-88] minutes, P = 0.01). The 30-day all-cause mortality rate was 6% in the PH-ECG group, which was significantly lower than that in the non-PH-ECG group (16%) (P = 0.037, hazard ratio [HR]: 0.38, 95% CI: 0.15-0.98). This trend was particularly evident in severely ill patients when stratified by GRACE score.The use of PH-ECG improved the survival rate of STEMI patients undergoing pPCI due to the improved pre-arrival preparation based on the EMS information. Coordination between EMS and PCI-capable institutes is essential for the management of PH-ECG.


Asunto(s)
Servicios Médicos de Urgencia , Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/cirugía , Intervención Coronaria Percutánea/efectos adversos , Infarto del Miocardio/etiología , Estudios Retrospectivos , Hospitales , Resultado del Tratamiento , Electrocardiografía
8.
Drug Metab Dispos ; 51(9): 1188-1195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344179

RESUMEN

Aldo-keto reductase 1C3 (AKR1C3) plays a role in the detoxification and activation of clinical drugs by catalyzing reduction reactions. There are approximately 400 single-nucleotide polymorphisms (SNPs) in the AKR1C3 gene, but their impact on the enzyme activity is still unclear. This study aimed to clarify the effects of SNPs of AKR1C3 with more than 0.5% global minor allele frequency on the reductase activities for its typical substrates. Recombinant AKR1C3 wild-type and R66Q, E77G, C145Y, P180S, or R258C variants were constructed using insect Sf21 cells, and reductase activities for acetohexamide, doxorubicin, and loxoprofen by recombinant AKR1C3s were measured by liquid chromatography-tandem mass spectrometry. Among the variants tested, the C145Y variant showed remarkably low (6%-14% of wild type) intrinsic clearances of reductase activities for all three drugs. Reductase activities of these three drugs were measured using 34 individual Japanese liver cytosols, revealing that heterozygotes of the SNP g.55101G>A tended to show lower reductase activities for three drugs than homozygotes of the wild type. Furthermore, genotyping of the SNP g.55101G>A causing C145Y in 96 Caucasians, 166 African Americans, 192 Koreans, and 183 Japanese individuals was performed by polymerase chain reaction-restriction fragment length polymorphism. This allelic variant was specifically detected in Asians, with allele frequencies of 6.8% and 3.6% in Koreans and Japanese, respectively. To conclude, an AKR1C3 allele with the SNP g.55101G>A causing C145Y would be one of the causal factors for interindividual variabilities in the efficacy and toxicity of drugs reduced by AKR1C3. SIGNIFICANCE STATEMENT: This is the first study to clarify that the AKR1C3 allele with the SNP g.55101G>A causing C145Y results in a decrease in reductase activity. Since the allele was specifically observed in Asians, the allele would be a factor causing an interindividual variability in sensitivity of drug efficacy or toxicity of drugs reduced by AKR1C3 in Asians.


Asunto(s)
Doxorrubicina , Humanos , Alelos , Frecuencia de los Genes/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética
9.
Drug Metab Dispos ; 51(10): 1230-1237, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37349114

RESUMEN

Human pregnane X receptor (PXR) is a major nuclear receptor that upregulates the expression of drug-metabolizing enzymes such as CYP3A4. In our recent study, it was revealed that PXR interacts with DAZ-associated protein 1 (DAZAP1), which is an essential component of the paraspeckle, a membraneless nuclear body, and the interaction was disassociated by rifampicin, a ligand of PXR. The purpose of this study was to clarify the roles of paraspeckles in PXR-mediated transcriptional regulation. Immunoprecipitation assays using PXR-overexpressing HepG2 (ShP51) cells revealed that PXR interacts with not only DAZAP1 but also NEAT1_2, a long noncoding RNA included in the paraspeckle, and that the interaction between PXR and NEAT1_2 was disassociated by rifampicin. These results suggest that PXR is trapped in paraspeckles and that the activation of PXR by its ligands facilitates its disassociation from paraspeckles. Induction of CYP3A4 by rifampicin was significantly enhanced by the knockdown of NEAT1_2 or DAZAP1 in ShP51 cells and their parental HepG2 cells. A luciferase assay using a plasmid containing the PXR response elements of CYP3A4 revealed that the increased CYP3A4 induction by siNEAT1_2 or siDAZAP1 was due to the increased transactivation by PXR. These results suggest that paraspeckles play a role in trapping nuclear PXR in the absence of the ligand to negatively regulate transactivation of its downstream gene. Collectively, this is the first study to demonstrate that the paraspeckle components NEAT1_2 and DAZAP1 negatively regulate CYP3A4 induction by PXR. SIGNIFICANCE STATEMENT: This study revealed that PXR interacts with paraspeckle components NEAT1_2 and DAZAP1 to suppress CYP3A4 induction by PXR, and the interaction is dissociated by PXR ligands. This finding provides a novel concept that paraspeckles formed by liquid-liquid phase separation potentially affect drug metabolism via negative regulation of PXR function.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ligandos , Paraspeckles , Receptor X de Pregnano/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampin/farmacología , Proteínas de Unión al ARN
10.
Drug Metab Dispos ; 51(8): 1016-1023, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137721

RESUMEN

Drug-drug interactions (DDI) have a significant impact on drug efficacy and safety. It has been reported that orlistat, an anti-obesity drug, inhibits the hydrolysis of p-nitrophenol acetate, a common substrate of the major drug-metabolizing hydrolases, carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC), in vitro. The aim of this study was to examine whether orlistat affects the pharmacokinetics of drug(s) metabolized by hydrolases in vivo after evaluating its inhibitory potencies against CES1, CES2, and AADAC in vitro. Orlistat potently inhibited the hydrolysis of acebutolol, a specific substrate of CES2, in a non-competitive manner (inhibition constant, K i = 2.95 ± 0.16 nM), whereas it slightly inhibited the hydrolysis of temocapril and eslicarbazepine acetate, specific substrates of CES1 and AADAC, respectively (IC50 >100 nM). The in vivo DDI potential was elucidated using mice, in which orlistat showed strong inhibition against acebutolol hydrolase activities in the liver and intestinal microsomes, similar to humans. The area under the curve (AUC) of acebutolol was increased by 43%, whereas the AUC of acetolol, a hydrolyzed metabolite of acebutolol, was decreased by 47% by co-administration of orlistat. The ratio of the K i value to the maximum unbound plasma concentration of orlistat (<0.012) is lower than the risk criteria for DDI in the liver defined by the US Food and Drug Administration guideline (>0.02), whereas the ratio of the K i value to the estimated intestinal luminal concentration (3.3 × 105) is considerably higher than the risk criteria in the intestine (>10). Therefore, this suggests that orlistat causes DDI by inhibiting hydrolases in the intestine. SIGNIFICANCE STATEMENT: This study demonstrated that orlistat, an anti-obesity drug, causes drug-drug interactions in vivo by potently inhibiting carboxylesterase 2 in the intestine. This is the first evidence that inhibition of hydrolases causes drug-drug interactions.


Asunto(s)
Fármacos Antiobesidad , Hidrolasas , Humanos , Ratones , Animales , Hidrolasas/metabolismo , Orlistat/farmacología , Hidrolasas de Éster Carboxílico/metabolismo , Fármacos Antiobesidad/farmacología , Acebutolol , Carboxilesterasa/metabolismo , Preparaciones Farmacéuticas/metabolismo , Hidrólisis , Interacciones Farmacológicas
11.
Drug Metab Dispos ; 51(6): 733-742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36927840

RESUMEN

Nintedanib, which is used to treat idiopathic pulmonary fibrosis and non-small cell lung cancer, is metabolized to a pharmacologically inactive carboxylate derivative, BIBF1202, via hydrolysis and subsequently by glucuronidation to BIBF1202 acyl-glucuronide (BIBF1202-G). Since BIBF1202-G contains an ester bond, it can be hydrolytically cleaved to BIBF1202. In this study, we sought to characterize these metabolic reactions in the human liver and intestine. Nintedanib hydrolysis was detected in human liver microsomes (HLMs) (Clearance [CL int]: 102.8 ± 18.9 µL/min per mg protein) but not in small intestinal preparations. CES1 was suggested to be responsible for nintedanib hydrolysis according to experiments using recombinant hydrolases and hydrolase inhibitors as well as proteomic correlation analysis using 25 individual HLM. BIBF1202 glucuronidation in HLM (3.6 ± 0.3 µL/min per mg protein) was higher than that in human intestinal microsomes (1.5 ± 0.06 µL/min per mg protein). UGT1A1 and gastrointestinal UGT1A7, UGT1A8, and UGT1A10 were able to mediate BIBF1202 glucuronidation. The impact of UGT1A1 on glucuronidation was supported by the finding that liver microsomes from subjects homozygous for the UGT1A1*28 allele showed significantly lower activity than those from subjects carrying the wild-type UGT1A1 allele. Interestingly, BIBF1202-G was converted to BIBF1202 in HLS9 at 70-fold higher rates than the rates of BIBF1202 glucuronidation. An inhibition study and proteomic correlation analysis suggested that ß-glucuronidase is responsible for hepatic BIBF1202-G deglucuronidation. In conclusion, the major metabolic reactions of nintedanib in the human liver and intestine were quantitatively and thoroughly elucidated. This information could be helpful to understand the inter- and intraindividual variability in the efficacy of nintedanib. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to characterize the enzymes responsible for each step of nintedanib metabolism in the human body. This study found that ß-glucuronidase may contribute to BIBF1202-G deglucuronidation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteómica , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Glucurónidos/metabolismo , Hidrolasas/metabolismo , Glucuronidasa/metabolismo , Cinética
12.
Arch Biochem Biophys ; 736: 109536, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36724833

RESUMEN

Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17ß-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.


Asunto(s)
Pentoxifilina , Humanos , Antiinflamatorios no Esteroideos , Células HEK293 , Microsomas Hepáticos/metabolismo , Nabumetona/metabolismo , Pentoxifilina/metabolismo , Warfarina/metabolismo , Biocatálisis
13.
Pharm Res ; 40(4): 863-871, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36002612

RESUMEN

PURPOSE: Small extracellular vesicles (sEV) containing proteins and RNAs play important roles as intercellular signal mediators. A critical issue is that there are multiple methods to prepare sEV fractions. The purpose of this study was to examine whether cancer cell-derived sEV fractions prepared by different isolation methods show similar responses for the induction of inflammatory cytokines in macrophages. METHODS: sEV fractions from the conditioned medium of MCF-7 cells were prepared by ultracentrifugation (UC), the MagCapture Exosome Isolation Kit PS (PS), or the ExoQuick-TC kit (EQ). The mRNA levels of inflammatory cytokines in differentiated THP-1 cells treated with the sEV fractions were evaluated. RESULTS: The yields of sEV fractions obtained from 1 mL conditioned medium by UC, PS, or EQ were 3.2×108 particles (0.27 µg protein), 12.8×108 particles (0.87 µg protein) and 23.5 ×108 particles (4.50 µg protein), respectively. The average particle sizes in the UC, PS, and EQ fractions were 184.8 ± 1.8 nm, 157.8 ± 1.3 nm and 165.8 ± 1.1 nm, respectively. CD9 and CD81, markers of sEV, were most highly detected in the PS fraction, followed by the EQ and UC fractions. These results suggest that PS gave sEV with relatively high purity, and many protein contaminants appear to be included in the EQ fraction. The mRNA levels of inflammatory cytokines in THP-1 macrophages were most prominently increased by treatment with the UC fraction, followed by the EQ and PS fractions, suggesting that contaminants rather than sEV may largely induce an inflammatory response. CONCLUSION: The isolation method affects the evaluation of sEV function.


Asunto(s)
Vesículas Extracelulares , Humanos , Medios de Cultivo Condicionados/metabolismo , Células MCF-7 , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , ARN Mensajero/metabolismo , Inflamación/metabolismo
14.
Drug Metab Dispos ; 51(1): 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36310032

RESUMEN

Enzymes of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase superfamilies are involved in the reduction of compounds containing a ketone group. In most cases, multiple isoforms appear to be involved in the reduction of a compound, and the enzyme(s) that are responsible for the reaction in the human liver have not been elucidated. The purpose of this study was to quantitatively evaluate the contribution of each isoform to reduction reactions in the human liver. Recombinant cytosolic isoforms were constructed, i.e., AKR1C1, AKR1C2, AKR1C3, AKR1C4, and carbonyl reductase 1 (CBR1), and a microsomal isoform, 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1), and their contributions to the reduction of 10 compounds were examined by extrapolating the relative expression of each reductase protein in human liver preparations to recombinant systems quantified by liquid chromatography-mass spectrometry. The reductase activities for acetohexamide, doxorubicin, haloperidol, loxoprofen, naloxone, oxcarbazepine, and pentoxifylline were predominantly catalyzed by cytosolic isoforms, and the sum of the contributions of individual cytosolic reductases was almost 100%. Interestingly, AKR1C3 showed the highest contribution to acetohexamide and loxoprofen reduction, although previous studies have revealed that CBR1 mainly metabolizes them. The reductase activities of bupropion, ketoprofen, and tolperisone were catalyzed by microsomal isoform(s), and the contributions of HSD11B1 were calculated to be 41%, 32%, and 104%, respectively. To our knowledge, this is the first study to quantitatively evaluate the contribution of each reductase to the reduction of drugs in the human liver. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to determine the contribution of aldo-keto reductase (AKR)-1C1, AKR1C2, AKR1C3, AKR1C4, carbonyl reductase 1, and 11ß-hydroxysteroid dehydrogenase type 1 to drug reductions in the human liver by utilizing the relative expression factor approach. This study found that AKR1C3 contributes to the reduction of compounds at higher-than-expected rates.


Asunto(s)
Cetonas , Deshidrogenasas-Reductasas de Cadena Corta , Humanos , Aldo-Ceto Reductasas/metabolismo , Carbonil Reductasa (NADPH) , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Acetohexamida , Hígado/metabolismo , Oxidorreductasas/metabolismo , Isoformas de Proteínas
15.
Biochem Pharmacol ; 205: 115247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113565

RESUMEN

N6-Methyladenosine (m6A) modification is the most prevalent RNA modification in mammals. We have recently demonstrated that inhibition of m6A modification by 3-deazaadenosine results in an increase in the expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, and CYP2C8 in human liver-derived cells. In the present study, we aimed to clarify the mechanism of m6A-mediated regulation of CYP2B6 expression. RNA immunoprecipitation using an anti-m6A antibody revealed that CYP2B6 mRNA in human liver and hepatocarcinoma-derived HepaRG cells was m6A-modified around the stop codon. In contrast to the treatment with 3-deazaadenosine, double knockdown of methyltransferase like (METTL) 3 and METTL14 (METTL3/14) resulted in a decrease in the levels of CYP2B6 mRNA in Huh-7 and HepaRG cells and a decrease in bupropion hydroxylase activity, a marker activity of CYP2B6, in HepaRG cells. The stability of CYP2B6 mRNA was not influenced by siMETTL3/14. Reporter assays using the plasmids containing the last exon or 5'-flanking region of CYP2B6 indicated that reporter activities were not influenced by knockdown of METTL3/14. The expression levels of the constitutive androstane receptor, pregnane X receptor, and retinoid X receptor, which are the nuclear receptors regulating the transcription of CYP2B6, were not influenced by siMETTL3/14. The chromatin immunoprecipitation and formaldehyde-assisted enrichment of regulatory elements assays revealed that H3K9me2, a repressive histone marker, was enriched in the vicinity of the upstream region of CYP2B6, and knockdown of METTL3/14 induced the condensation of the chromatin structure in this region. In conclusion, we demonstrated that METTL3/14 upregulated CYP2B6 expression by altering the chromatin status.


Asunto(s)
Cromatina , Citocromo P-450 CYP2B6 , Humanos , Adenosina/farmacología , Adenosina/metabolismo , Bupropión , Cromatina/genética , Codón de Terminación , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2C8/genética , Formaldehído , Histonas/metabolismo , Metilación , Metiltransferasas/genética , Receptor X de Pregnano/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Plants (Basel) ; 11(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406935

RESUMEN

The International Space Station (ISS) provides a precious opportunity to study plant growth and development under microgravity (micro-G) conditions. In this study, four lines of Arabidopsis seeds (wild type, wild-type MCA1-GFP, mca1-knockout, and MCA1-overexpressed) were cultured on a nylon lace mesh placed on Gelrite-solidified MS-medium in the Japanese experiment module KIBO on the ISS, and the entanglement of roots with the mesh was examined under micro-G and 1-G conditions. We found that root entanglement with the mesh was enhanced, and root coiling was induced under the micro-G condition. This behavior was less pronounced in mca1-knockout seedlings, although MCA1-GFP distribution at the root tip of the seedlings was nearly the same in micro-G-grown seedlings and the ground control seedlings. Possible involvement of MCA1 in the root entanglement is discussed.

17.
Biochem Pharmacol ; 199: 115010, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314168

RESUMEN

Human arylacetamide deacetylase (AADAC) hydrolyzes various drugs containing an acetyl group, such as ketoconazole and rifampicin. Knowledge about the role of human AADAC in drug metabolism is accumulating, but the regulatory mechanism of its expression has not been elucidated. In mice, it has been suggested that Aadac expression may be regulated by peroxisome proliferator-activated receptor α (Pparα). This study examined whether human AADAC is regulated by PPARα, which widely regulates the expression of lipid metabolism-related genes. In human hepatoma Huh-7 cells, AADAC mRNA and protein levels were significantly increased by treatment with fenofibric acid and WY-14643, PPARα ligands. Knockdown and overexpression of PPARα resulted in decreased and increased expression of AADAC, respectively. Luciferase assays revealed that the direct repeat 1 (DR1) at -193/-181 in the AADAC promoter region is responsible for transactivation by PPARα. Chromatin immunoprecipitation assays revealed the binding of PPARα to DR1. Thus, it was demonstrated that human AADAC is regulated by PPARα through binding to DR1. Oil red O staining showed that overexpression of AADAC in Huh-7 cells suppressed lipid accumulation after treatment with free fatty acids. The suppression was restored by treatment with diisopropyl fluorophosphate, an AADAC inhibitor. The WY-14643-mediated suppression of lipid accumulation was restored by AADAC knockdown. These results suggested that AADAC has a role in suppressing cellular lipid accumulation. In conclusion, this study demonstrated the regulation of human AADAC by PPARα and its significance in lipid accumulation.


Asunto(s)
Metabolismo de los Lípidos , PPAR alfa , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Humanos , Hidrólisis , Lípidos , Hígado/metabolismo , Ratones , PPAR alfa/genética , PPAR alfa/metabolismo
19.
Drug Metab Dispos ; 50(5): 624-633, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152204

RESUMEN

Interindividual differences in the expression and activity of drug metabolizing enzymes including cytochrome P450, UDP-glucuronosyltransferase, and esterases cause variable therapeutic efficacy or adverse events of drugs. As the major mechanisms causing the variability in the expression of drug metabolizing enzymes, transcriptional regulation by transcription factors, epigenetic regulation including DNA methylation, and posttranscriptional regulation by microRNA are well known. Recently, adenosine-to-inosine RNA editing and methylation of adenosine at the N 6 position on RNA have emerged as novel regulators of drug metabolism potency. In this review article, the current knowledge of these two prevalent types of posttranscriptional modification mediated modulation of drug metabolism involved genes is introduced. SIGNIFICANCE STATEMENT: Elucidation of the significance of adenosine-to-inosine RNA editing and N 6-methyladenosine in the regulation of drug metabolizing enzymes is expected to lead to a deeper understanding of interindividual variability in the therapeutic efficacy or adverse effects of medicines.


Asunto(s)
MicroARNs , Edición de ARN , Adenosina/metabolismo , Epigénesis Genética , Inosina/metabolismo , MicroARNs/metabolismo
20.
Biochem Pharmacol ; 195: 114842, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798123

RESUMEN

Orally administered ketoconazole may rarely induce liver injury and adrenal insufficiency. A metabolite formed by arylacetamide deacetylase (AADAC)-mediated hydrolysis has been observed in cellulo studies, and it is relevant to ketoconazole-induced cytotoxicity. This study tried to examine the significance of AADAC in ketoconazole-induced toxicity in vivo using Aadac knockout mice. Oral administration of 150 mg/kg ketoconazole resulted in the area under the plasma concentration-time curve values of ketoconazole and N-deacetylketoconazole, a hydrolyzed metabolite of ketoconazole, in Aadac knockout mice being significantly higher and lower than those in wild-type mice, respectively. With the administration of ketoconazole (300 mg/kg/day) for 7 days, Aadac knockout mice showed higher mortality (100%) than wild-type mice (42.9%), and they also showed significantly higher plasma alanine transaminase and lower corticosterone levels, thus representing liver injury and steroidogenesis inhibition, respectively. It was suggested that a higher plasma ketoconazole concentration likely accounts for the inhibition of the synthesis of corticosterone, which has anti-inflammatory effects, in the adrenal gland in Aadac KO mice. In Aadac knockout mice, hepatic mRNA levels of immune- and inflammation-related factors were increased by the administration of 300 mg/kg ketoconazole, and the increase was restored by the replenishment of corticosterone (40 mg/kg, s.c.) along with recoveries of plasma alanine transaminase levels. In conclusion, Aadac defects exacerbate ketoconazole-induced liver injury by inhibiting glucocorticoid synthesis and enhancing the inflammatory response. This in vivo study revealed that the hydrolysis of ketoconazole by AADAC can mitigate ketoconazole-induced toxicities.


Asunto(s)
Insuficiencia Suprarrenal/genética , Hidrolasas de Éster Carboxílico/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Cetoconazol/toxicidad , Insuficiencia Suprarrenal/enzimología , Insuficiencia Suprarrenal/etiología , Animales , Área Bajo la Curva , Hidrolasas de Éster Carboxílico/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/toxicidad , Regulación Enzimológica de la Expresión Génica , Hidrólisis , Cetoconazol/metabolismo , Cetoconazol/farmacocinética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microsomas Hepáticos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...