Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2411211, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246277

RESUMEN

Transition metal dichalcogenides (TMDs) have received considerable attention as promising electrocatalysts for the hydrogen evolution reaction (HER), yet their potential is often constrained by the inertness of the basal planes arising from their poor hydrogen adsorption ability. Here, the relationship between the electronic structure of the WS2 basal plane and HER activity is systemically analyzed to establish a clear insight. The valance state of the sulfur atoms on the basal plane has been tuned to enhance hydrogen adsorption through sequential engineering processes, including direct phase transition and heterostructure that induces work function-difference-induced unidirectional electron transfer. Additionally, an innovative synthetic approach, harnessing the built-in internal polarization field at the W-graphene heterointerface, triggers the in-situ formation of sulfur vacancies in the bottom WSx (x < 2) layers. The resultant modulation of the valance state of the sulfur atom stabilizes the W-S bond, while destabilizing the S-H bond. The electronic structural changes are further amplified by the release and transfer of surplus electrons via sulfur vacancies, filling the valance state of W and S atoms. Consequently, this work provides a comprehensive understanding of the interplay between the electronic structure of the WS2 basal plane and the HER activity, focusing on optimizing S-H bonding state.

2.
Adv Mater ; : e2406251, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078377

RESUMEN

With the escalating global demand for electric vehicles and sustainable energy solutions, increasing focus is placed on developing electrochemical systems that offer fast charging and high-power output, primarily governed by mass transport. Accordingly, porous carbons have emerged as highly promising electrochemically active or supporting materials due to expansive surface areas, tunable pore structures, and superior electrical conductivity, accelerating surface reaction. Yet, while substantial research has been devoted to crafting various porous carbons to increase specific surface areas, the optimal utilization of the surfaces remains underexplored. This review emphasizes the critical role of the fluid dynamics within multiscale porous carbonaceous electrodes, leading to substantially enhanced pore utilization in electrochemical systems. It elaborates on strategies of using sacrificial templates for incorporating meso/macropores into microporous carbon matrix, while exploiting the unique properties of polyphenol moieties such as sustainable carbons derived from biomass, inherent adhesive/cohesive interactions with template materials, and facile complexation capabilities with diverse materials, thereby enabling adaptive structural modulations. Furthermore, it explores how multiscale pore configurations influence pore-utilization efficiency, demonstrating advantages of incorporating multiscale pores. Finally, synergistic impact on the high-power electrochemical systems is examined, attributed to improved fluid-dynamic behavior within the carbonaceous frameworks, providing insights for advancing next-generation high-power electrochemical applications.

3.
Adv Mater ; 36(5): e2304803, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37589475

RESUMEN

The binder is an essential component in determining the structural integrity and ionic conductivity of Li-ion battery electrodes. However, conventional binders are not sufficiently conductive and durable to be used with solid-state electrolytes. In this study, a novel system is proposed for a Li secondary battery that combines the electrolyte and binder into a unified structure, which is achieved by employing para-phenylenediamine (pPD) moiety to create supramolecular bridges between the parent binders. Due to a partial crosslinking effect and charge-transferring structure of pPD, the proposed strategy improves both the ionic conductivity and mechanical properties by a factor of 6.4 (achieving a conductivity of 3.73 × 10-4 S cm-1 for poly(ethylene oxide)-pPD) and 4.4 (reaching a mechanical strength of 151.4 kPa for poly(acrylic acid)-pPD) compared to those of conventional parent binders. As a result, when the supramolecules of pPD are used as a binder in a pouch cell with a lean electrolyte loading of 2 µL mAh-1 , a capacity retention of 80.2% is achieved even after 300 cycles. Furthermore, when it is utilized as a solid-state electrolyte, an average Coulombic efficiency of 99.7% and capacity retention of 98.7% are attained under operations at 50 °C without external pressure or a pre-aging process.

4.
Dalton Trans ; 48(31): 11941-11950, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31317154

RESUMEN

Transition metal oxide (TMO)-based anode materials for Li-ion batteries (LIBs) have generally suffered from limitations of intrinsically severe pulverization upon lithiation and reduced electrical conductivity. To address these issues, an approach of generating hollow nanostructures of TMOs complexed with highly conductive species has been attempted. As a novel means to implement highly electrochemically active TMO-based hollow nanostructures, a pre-synthesized template of a metal organic framework, zeolitic imidazolate framework (ZIF-8), was sequentially treated with partial carbonization and oxidation processes, whereby a hollow, nanocage-like structure of ZnO was obtained while preserving the carbonaceous frame as the electroconductive matrix. Furthermore, through additional incorporation of carbon nanotubes (CNTs), hollow nanocages of ZnO/N-doped carbon were successfully interwoven to form a well-complexed three-dimensional network, imparting enhanced electrical conductivity and mechanical stability to the complexes. When the synthesized ternary nanocomposites of ZnO/N-doped carbon/CNTs were used as anodes of LIBs, enhanced electrochemical performance was achieved, with high specific capacity, excellent rate capability, and greatly extended cycling stability, which could be attributed to the facilitated Li-ion diffusivity and improved electrical conductivity. Therefore, it is highly expected that the proposed strategy could be extended as a general platform for realizing uniquely structured TMO-based electrode materials for high-performance energy storage systems.

5.
Soft Matter ; 15(4): 785-791, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30638244

RESUMEN

When multiple intermolecular interactions occur simultaneously, complexed molecules undergo gelation by inter-cohesive bonding, inducing a pseudo-crosslinking effect to form a supramolecular gel. Among the number of substances that can induce supramolecular assembly, phenolic species such as 3,4-dihydroxy-l-phenylalanine (DOPA) are widely utilized for synthesizing adhesive materials. However, despite the strong adhesion capability of monomeric phenol, it lacks cohesive strength and rarely forms a supramolecular gel to secure its mechanical properties. In this study, to overcome this obstacle, we synthesized a supramolecular coacervate hydrogel by simply mixing poly(N-vinylpyrrolidone) (PVP) and tannic acid (TA), resulting in strong cohesive interactions by virtue of the larger molecular size of TA and reinforced molecular interactions attributed to the presence of galloyl groups with a high density. We further analyzed the rheological and adhesive properties of PVP-TA coacervate hydrogels, revealing that they could exhibit not only a self-healing property, but also super adhesive properties with an average adhesion strength of 3.71 MPa on a glass substrate, which is >4 times stronger than that of conventional PVP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA