Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001125

RESUMEN

In this paper, two orthogonally placed Vivaldi antennas with a septum-like polarizer to generate circular polarized (CP) waves are presented. Septum polarizers have garnered attention due to their simple structure and high quality of CP waves. While a typical septum polarizer has been applied to various types of waveguides, its applicability to the substrate integrated Vivaldi antenna is demonstrated here for the first time. A pulse train-shaped polarizer is used, which is placed on one of the two Vivaldi antennas. The contours of the polarizer are optimized using a genetic algorithm to provide an equal amplitude and 90° phase difference between the two orthogonal electric fields. In contrast to typical feed networks with a 90° phase shifter, any unwanted loss caused by an electronic circuit can be greatly mitigated. The antenna prototype was fabricated, and its radiation pattern and impedance matching were measured and compared to the simulated results.

2.
Sci Rep ; 13(1): 571, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631519

RESUMEN

Recently, biocompatible optical sources have been surfacing for new-rising biomedical applications, allowing them to be used for multi-purpose technologies such as biological sensing, optogenetic modulation, and phototherapy. Especially, vertical-cavity surface-emitting laser (VCSEL) is in the spotlight as a prospective candidate for optical sources owing to its low-driving current performance, low-cost, and package easiness in accordance with two-dimensional (2D) arrays structure. In this study, we successfully demonstrated the actualization of biocompatible thin-film 930 nm VCSELs transferred onto a Polydimethylsiloxane (PDMS) carrier. The PDMS feature with biocompatibility as well as biostability makes the thin-film VCSELs well-suited for biomedical applications. In order to integrate the conventional VCSEL onto the PDMS carrier, we utilized a double-transfer technique that transferred the thin-film VCSELs onto foreign substrates twice, enabling it to maintain the p-on-n polarity of the conventional VCSEL. Additionally, we employed a surface modification-assisted bonding (SMB) using an oxygen plasma in conjunction with silane treatment when bonding the PDMS carrier with the substrate-removed conventional VCSELs. The threshold current and maximum output power of the fabricated 930 nm thin-film VCSELs are 1.08 mA and 7.52 mW at an injection current of 13.9 mA, respectively.


Asunto(s)
Dimetilpolisiloxanos , Rayos Láser , Fototerapia
3.
Sensors (Basel) ; 21(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670691

RESUMEN

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient's vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


Asunto(s)
Prótesis e Implantes , Telemetría , Impedancia Eléctrica , Electricidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...