Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oral Dis ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054859

RESUMEN

OBJECTIVES: This study investigated the role of fibrin on neutrophil extracellular traps (NETs) formation from neutrophils and to elucidate the involvement of mitochondria in NETs formation during periodontitis. MATERIALS AND METHODS: Plasminogen-deficient (Plg-/-) mice were employed to evaluate the effects of fibrin deposition on inflammation, bone resorption, and neutrophil infiltration in periodontal tissues. In addition, in vitro tests evaluated fibrin's impact on neutrophil-driven inflammation. Mitochondrial reactive oxygen species (mtROS) levels within neutrophils were quantified utilizing flow cytometry and immunofluorescence in vitro. Furthermore, the anti-inflammatory properties of the mtROS scavenger, Mito-TEMPO, were confirmed to regulate the NET formation in vitro and in vivo. RESULTS: Plasminogen deficiency resulted in increased fibrin deposition, neutrophil infiltration, inflammatory factors concentration, and alveolar bone resorption in periodontal tissues. After neutrophils were treated by fibrin in vitro, the expression of inflammatory factors, the formation of mtROS, and NETs enriched in mitochondrial DNA (mtDNA) were upregulated, which were reversed by Mito-TEMPO in vitro. Moreover, Mito-TEMPO alleviated inflammation in Plg-/- mice. CONCLUSIONS: This study showed that fibrin deposition in gingiva induced the NET formation in Plg-/- mice, in which the DNA in NETs was from mitochondria depending on increasing mtROS.

2.
World J Hepatol ; 16(5): 688-702, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818294

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders of varying severity, ultimately leading to fibrosis. This spectrum primarily consists of NAFL and non-alcoholic steatohepatitis. The pathogenesis of NAFLD is closely associated with disturbances in the gut microbiota and impairment of the intestinal barrier. Non-gut commensal flora, particularly bacteria, play a pivotal role in the progression of NAFLD. Notably, Porphyromonas gingivalis, a principal bacterium involved in periodontitis, is known to facilitate lipid accumulation, augment immune responses, and induce insulin resistance, thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD. The influence of oral microbiota on NAFLD via the "oral-gut-liver" axis is gaining recognition, offering a novel perspective for NAFLD management through microbial imbalance correction. This review endeavors to encapsulate the intricate roles of oral bacteria in NAFLD and explore underlying mechanisms, emphasizing microbial control strategies as a viable therapeutic avenue for NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA