Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 171: 116172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278025

RESUMEN

Chronic inflammation can promote cancer development as observed in inflammation-induced colorectal cancer (CRC). However, the poor treatment outcomes emphasize the need for effective treatment. Astragalus polysaccharide (APS), a vital component of the natural drug Astragalus, has anti-tumor effects by inhibiting cancer cell proliferation and enhancing immune function. In this study, we found that APS effectively suppressed CRC development through activating CD8+ T cells and reversing its inhibitory state in the tumor microenvironment (TME) of AOM/DSS inflammation-induced CRC mice. Network pharmacology and clinical databases suggested that the STAT3/ Galectin-3(Gal-3)/LAG3 pathway might be APS's potential target for treating CRC and associated with CD8+ T cell dysfunction. In vivo experiments showed that APS significantly reduced phosphorylated STAT3 and Gal-3 levels in tumor cells, as well as LAG3 in CD8+ T cells. Co-culture experiments with MC38 and CD8+ T cells demonstrated that APS decreased the expression of co-inhibitory receptor LAG3 in CD8+ T cells by targeting STAT3/Gal-3 in MC38 cells. Mechanism investigations revealed that APS specifically improved CD8+ T cell function through modulation of the STAT3/Gal-3/LAG3 pathway to inhibit CRC development, providing insights for future clinical development of natural anti-tumor drugs and immunotherapies as a novel strategy combined with immune checkpoint inhibitors (ICIs).


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Ratones , Linfocitos T CD8-positivos , Antineoplásicos/farmacología , Inflamación/metabolismo , Neoplasias Colorrectales/patología , Polisacáridos/metabolismo , Microambiente Tumoral
2.
Gut Microbes ; 15(2): 2290315, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38062857

RESUMEN

Intestinal microbiota dysbiosis and metabolic disruption are well-known as the primary triggers of ulcerative colitis (UC). However, their role in regulating the group 3 innate lymphoid cells (ILC3s), which are essential for intestinal health, remains unexplored during the development of disease severity. Here, our results showed that the microbiota structure of patients with severe UC (SUCs) differed from those with mild UC (MiUCs), moderate UC (MoUCs), and healthy controls (HCs). Microbes producing secondary bile acids (SBAs) and SBAs decreased with the aggravation of UC, and a strong positive correlation existed between them. Next, fecal microbiota transfer was used to reproduce the human-derived microbiota in mice and decipher the microbiota-mediated inflammatory modulation during an increase in disease severity. Mice receiving SUC-derived microbiota exhibited enhancive inflammation, a lowered percentage of ILC3s, and the down-regulated expressions of bile acid receptors, including vitamin D receptor (VDR) and pregnane X receptor (PXR), in the colon. Similar to clinical results, SBA-producing microbes, deoxycholic acids (DCA), and 12-ketolithocholic acids (12-KLCA) were diminished in the intestine of these recipients. Finally, we compared the therapeutic potential of DCA and 12-KLCA in preventing colitis and the regulatory mechanisms mediated by ILC3s. 12-KLCA but not DCA represented a strong anti-inflammatory effect associated with the higher expression of VDR and the lower secretion of IL-17A from colonic ILC3s. Collectively, these findings provide new signatures for monitoring the acute deterioration of UC by targeting gut microbiota and bile acid metabolism and demonstrate the therapeutic and preventive potential of a novel microbiota-derived metabolite, 12-KLCA.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Animales , Humanos , Ratones , Ácidos y Sales Biliares/metabolismo , Colitis/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colon/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Inmunidad Innata/efectos de los fármacos , Interleucina-17/metabolismo , Interleucina-17/farmacología , Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL
3.
Food Funct ; 14(2): 1099-1112, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36594489

RESUMEN

Pulmonary inflammation as one of the extraintestinal manifestations of ulcerative colitis (UC) has attracted extensive attention, and its pathogenesis is closely related to gut dysbiosis. Bifidobacterium animalis subsp. lactis BL-99 (BL-99) can alleviate osteoporosis caused by UC, but less research has been done on other extraintestinal manifestations (EIM) caused by UC. This study aimed to explore the role and potential mechanisms of BL-99 on DSS-induced pulmonary complications in colitis mice. The results showed that BL-99 decreased weight loss, disease activity index score, colonic pathology score, and the production of pro-inflammatory cytokines (e.g., TNF-α, IL-1ß, and IL-6) in colitis mice. BL-99 also alleviated DSS-induced lung pathological damage by suppressing the infiltration of pro-inflammatory cytokines, inflammatory monocytes, and macrophages. Furthermore, 16S rRNA gene sequencing showed lower abundances of several potentially pathogenic bacteria (e.g., Burkholderia, Shigella, and Clostridium perfringens) and enrichment in specific beneficial bacteria (e.g., Adlercreutzia and Bifidobacterium animalis) in colitis mice with BL-99 treatment. Targeted metabolomics suggested that BL-99 intervention promoted the production of intestinal acetate and butyrate. Finally, we observed that the pulmonary expression of primary acetate and butyrate receptors, including FFAR2, FFAR3, and, GPR109a, was up-regulated in BL-99-treated mice, which negatively correlated with inflammatory monocytes and macrophages. Altogether, these results suggest that BL-99 might be utilized as a probiotic intervention to prevent the incidence of colitis-related lung injury owing to its ability to shape the intestinal microbiota and suppress inflammation.


Asunto(s)
Bifidobacterium animalis , Colitis Ulcerosa , Colitis , Lesión Pulmonar , Animales , Ratones , Bifidobacterium animalis/metabolismo , Butiratos/metabolismo , Colitis/inducido químicamente , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Lesión Pulmonar/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , ARN Ribosómico 16S/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...