Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1401526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157510

RESUMEN

Yellow mosaic disease (YMD) with typical symptoms of alternating bright yellow to green patches associated with stunting, downward cupping, and wrinkling has been observed in mung bean on agricultural farms in Coimbatore, Tamil Nadu, India. PCR using gene-specific primers indicated the presence of the yellow mosaic virus in symptomatic plants. Rolling circle amplification (RCA) followed by restriction digestion detected ~2.7 kb of DNA-A and DNA-B, allowing the identification of a bipartite genome. The full-length genome sequences were deposited in NCBI GenBank with the accession numbers MK317961 (DNA-A) and MK317962 (DNA-B). Sequence analysis of DNA-A showed the highest sequence identity of 98.39% to the DNA-A of mungbean yellow mosaic virus (MYMV)-Vigna radiata (MW736047), while DNA-B exhibited the highest level of identity (98.21%) to the MYMV-Vigna aconitifolia isolate (DQ865203) reported from Tamil Nadu. Recombinant analysis revealed distinct evidence of recombinant breakpoints of DNA-A within the region encoding the open reading frame (ORF) AC2 (transcription activation protein), with the major parent identified as MYMV-PA1 (KC9111717) and the potential minor parent as MYMV-Namakkal (DQ86520.1). Interestingly, a recombination event in the common region (CR) of DNA-B, which encodes the nuclear shuttle protein and the movement protein, was detected. MYMIV-M120 (FM202447) and MYMV-Vigna (AJ132574) were identified as the event's major and minor parents, respectively. This large variation in DNA-B led us to suspect a recombination in DNA-B. Dimeric MYMV infectious clones were constructed, and the infectivity was confirmed through agroinoculation. In future prospects, unless relying on screening using whiteflies, breeders and plant pathologists can readily use this agroinoculation procedure to identify resistant and susceptible cultivars to YMD.

2.
bioRxiv ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39026703

RESUMEN

Type-I interferons (IFN) induce cellular proteins with antiviral activity. One such protein is Interferon Stimulated Gene 15 (ISG15). ISG15 is conjugated to proteins during ISGylation to confer antiviral activity and regulate cellular activities associated with inflammatory and neurodegenerative diseases and cancer. Apart from ISGylation, unconjugated free ISG15 is also released from cells during various conditions, including virus infection. The role of extracellular ISG15 during virus infection was unknown. We show that extracellular ISG15 triggers ISGylation and acts as a soluble antiviral factor to restrict virus infection via an IFN-independent mechanism. Specifically, extracellular ISG15 acts post-translationally to markedly enhance the stability of basal intracellular ISG15 protein levels to support ISGylation. Furthermore, extracellular ISG15 interacts with cell surface integrin (α5ß1 integrins) molecules via its RGD-like motif to activate the integrin-FAK (Focal Adhesion Kinase) pathway resulting in IFN-independent ISGylation. Thus, our studies have identified extracellular ISG15 protein as a new soluble antiviral factor that confers IFN-independent non-canonical ISGylation via the integrin-FAK pathway by post-translational stabilization of intracellular ISG15 protein.

3.
Plant Physiol Biochem ; 214: 108882, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972244

RESUMEN

Silver (Ag) is a non-essential heavy metal with substantial environmental toxicity but an excellent promotor for plant organogenesis. It is used as an elicitor for secondary metabolite production and for in planta synthesis of metal nanoparticles (MNPs). In the present study, the Ag accumulation and reduction capability of in vitro shoots of Withania somnifera and the toxicity and elicitation effect of Ag on in vitro shoots were explored. In vitro shoot cultures of W. somnifera were treated with different concentrations of silver nitrate for a specific treatment period. Growth index, withaferin A, elemental and electron microscopy analyses were done on silver-treated in vitro shoots of W. somnifera. 1 mM silver nitrate treatment for 12 days period was found to give increased growth index (1.425 ± 0.05c) and withaferin A (2.568 ± 0.08e mg g-1) content. The concentration of bioaccumulated Ag in 1 mM silver nitrate treated in vitro shoot was found to be 50.8 ppm. The presence of nano-Ag was also found in the leaves of 1 mM silver nitrate-treated in vitro shoots. In summary, this is the first report portraying the bioaccumulation and in planta reduction capability of the in vitro shoot system of W. somnifera, which makes it a potential medicinal plant of commercial value for silver contaminated soils.


Asunto(s)
Nanopartículas del Metal , Brotes de la Planta , Plata , Withania , Witanólidos , Withania/metabolismo , Withania/crecimiento & desarrollo , Withania/efectos de los fármacos , Witanólidos/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Nanopartículas del Metal/química , Plata/farmacología , Nitrato de Plata/farmacología
4.
Plant Dis ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38932446

RESUMEN

Glory lily (Gloriosa superba), an ornamental climbing plant, contains the bioactive compound colchicine, attracting attention from the pharmaceutical industry. However, soil-borne pathogens have emerged as a serious threat to the cultivation of glory lily, leading to substantial economic losses in the southern parts of India. Among these, the three major pathogens are Macrophomina phaseolina, Fusarium oxysporum, and Agroathelia rolfsii, causing dry root rot (also referred to as charcoal rot), wilt, and stem rot, respectively. Here, we characterised these pathogens using morphological characteristics and phylogenetic analysis of DNA sequences related to the internal transcribed spacer (ITS) of ribosomal DNA, calmodulin (CAL) and translation elongation factor (TEF)-1α. Further, in the pathogenicity tests, the inoculation of M. phaseolina alone resulted in lesions measuring 7.54±0.01 mm on tubers and 90% seedling mortality. This severity was comparable to the simultaneous inoculation of all three pathogens, indicating the prominence of dry root rot among soil-borne diseases. This study marks the first detailed investigation of soil-borne pathogens combined infection in G. superba, contributing to the understanding of fungal disease complexity in medicinal plants.

5.
J Chem Theory Comput ; 20(14): 5866-5881, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38942732

RESUMEN

The optimal interaction of drugs with plasma membranes and membranes of subcellular organelles is a prerequisite for desirable pharmacology. Importantly, for drugs targeting the transmembrane lipid-facing sites of integral membrane proteins, the relative affinity of a drug to the bilayer lipids compared to the surrounding aqueous phase affects the partitioning, access, and binding of the drug to the target site. Molecular dynamics (MD) simulations, including enhanced sampling techniques such as steered MD, umbrella sampling (US), and metadynamics, offer valuable insights into the interactions of drugs with the membrane lipids and water in atomistic detail. However, these methods are computationally prohibitive for the high-throughput screening of drug candidates. This study shows that applying denoising diffusion probabilistic models (DDPMs), a generative AI method, to US simulation data reduces the computational cost significantly. Specifically, the models used only partial (one-third) data from the US simulations and reproduced the complete potential of mean force (PMF) profiles for three FDA-approved drugs (ß2-adrenergic agonists) and ∼20 biologically relevant chemicals with known experimentally characterized bilayer locations. Intriguingly, the model can predict the solvation-free energies for partitioning and crossing the bilayer, preferred bilayer locations (low-energy well), and orientations of the ligands with high accuracy. The results indicate that DDPMs can be used to characterize the complete membrane partitioning profile of drug molecules using fewer umbrella sampling simulations at select positions along the bilayer normal (z-axis), irrespective of their amphiphilic-lipophilic-cephalophilic characteristics.


Asunto(s)
Inteligencia Artificial , Simulación de Dinámica Molecular , Difusión , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Estadísticos , Membrana Celular/química , Membrana Celular/metabolismo
6.
Arch Insect Biochem Physiol ; 116(2): e22123, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860775

RESUMEN

Aphids are sap-sucking insects responsible for crop losses and a severe threat to crop production. Proteins in the aphid saliva are integral in establishing an interaction between aphids and plants and are responsible for host plant adaptation. The cotton aphid, Aphis gossypii (Hemiptera: Aphididae) is a major pest of Gossypium hirsutum. Despite extensive studies of the salivary proteins of various aphid species, the components of A. gossypii salivary glands are unknown. In this study, we identified 123,008 transcripts from the salivary gland of A. gossypii. Among those, 2933 proteins have signal peptides with no transmembrane domain known to be secreted from the cell upon feeding. The transcriptome includes proteins with more comprehensive functions such as digestion, detoxification, regulating host defenses, regulation of salivary glands, and a large set of uncharacterized proteins. Comparative analysis of salivary proteins of different aphids and other insects with A. gossypii revealed that 183 and 88 orthologous clusters were common in the Aphididae and non-Aphididae groups, respectively. The structure prediction for highly expressed salivary proteins indicated that most possess an intrinsically disordered region. These results provide valuable reference data for exploring novel functions of salivary proteins in A. gossypii with their host interactions. The identified proteins may help develop a sustainable way to manage aphid pests.


Asunto(s)
Áfidos , Proteínas de Insectos , Glándulas Salivales , Transcriptoma , Animales , Áfidos/genética , Áfidos/metabolismo , Glándulas Salivales/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo , Gossypium/genética , Gossypium/metabolismo , Perfilación de la Expresión Génica
7.
Microbiol Res ; 283: 127678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503218

RESUMEN

Charcoal rot caused by Macrophomina phaseolina is one of the most devastating diseases that cause severe yield loss in Gloriosa superba cultivation. Plant growth-promoting rhizobacteria (PGPR) are extensively harnessed as biocontrol agents due to their effectiveness in combating a wide array of plant pathogens through a multifaceted approach. The present study delved into the mechanisms underlying its ability to inhibit root rot pathogen and its capacity to promote plant growth in G. superba, commonly known as glory lily. PGPR isolated from the rhizosphere of glory lily were subjected to in vitro assessments using the dual plate technique. The isolated Bacillus subtilis BGS-10 and B. velezensis BGS-21 showed higher mycelial inhibition (61%) against M. phaseolina. These strains also promote plant growth by producing indole-3-acetic acid, siderophore, ammonia, amylase, cellulase, pectinase, xylanase, and lipase chemicals. Genome screening of BGS-10 and BGS-21 revealed the presence of antimicrobial peptide genes such as Iturin (ituD gene), surfactin (srfA and sfp genes) along with the mycolytic enzyme ß-1,3-glucanase. Further, the presence of secondary metabolites in the bacterial secretome was identified through gas chromatography-mass spectrometry (GC/MS) analysis. Notably, pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), 9 H-pyrido[3,4-b] indole and L-leucyl-D-leucine exhibited the highest docking score against enzymes responsible for pathogen growth and plant cell wall degradation. Under glasshouse conditions, tuber treatment and soil application of talc-based formulation of B. subtilis BGS-10 and B. velezensis BGS-21 suppress the root rot incidence with a minimal disease incidence of 27.78% over untreated control. Concurrently, there was a notable induction of defense-related enzymes, including peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL), in glory lily. Therefore, it can be concluded that plant growth-promoting Bacillus strains play a significant role in fortifying the plant's defense mechanisms against the root rot pathogen.


Asunto(s)
Ascomicetos , Bacillus , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Desarrollo de la Planta , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
8.
J Chem Inf Model ; 64(2): 483-498, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38198666

RESUMEN

Uridine 5'-diphospho-glulcuronosyltransferase 2B17 (UGT2B17) is important in the metabolism of steroids and orally administered drugs due to its high interindividual variability. However, the structural basis governing the substrate selectivity or inhibition of UGT2B17 remains poorly understood. This study investigated 76 FDA-approved drugs and 20 steroids known to undergo glucuronidation for their metabolism by UGT2B17. Specifically, we assessed the substrate selectivity for UGT2B17 over other UGT enzymes using recombinant human UGT2B17 (rUGT2B17), human intestinal microsomes, and human liver microsomes. The quantitative contribution of intestinal UGT2B17 in the glucuronidation of these compounds was characterized using intestinal microsomes isolated from UGT2B17 expressors and nonexpressors. In addition, a structure-based pharmacophore model for UGT2B17 substrates was built and validated using the studied pool of substrates and nonsubstrates. The results show that UGT2B17 could metabolize 23 out of 96 compounds from various chemical classes, including alcohols and carboxylic acids, particularly in the intestine. Interestingly, amines were less susceptible to UGT2B17 metabolism, though they could inhibit the enzyme. Three main pharmacophoric features of UGT2B17 substrates include (1) the presence of an accessible -OH or -COOH group near His35 residue, (2) a hydrophobic functional group at ∼4.5-5 Šfrom feature 1, and (3) an aromatic ring ∼5-7 Šfrom feature 2. Most of the studied compounds inhibited UGT2B17 activity irrespective of their substrate potential, indicating the possibility of multiple mechanisms. These data suggest that UGT2B17 is promiscuous in substrate selectivity and inhibition and has a high potential to produce significant variability in the absorption and disposition of orally administered drugs.


Asunto(s)
Glucuronosiltransferasa , Esteroides , Humanos , Glucuronosiltransferasa/metabolismo , Uridina , Antígenos de Histocompatibilidad Menor/metabolismo
9.
Insect Biochem Mol Biol ; 165: 104060, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123026

RESUMEN

Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.


Asunto(s)
Áfidos , Vigna , Animales , Transcriptoma , Áfidos/genética , Áfidos/metabolismo , Vigna/genética , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Proteómica/métodos , Espectrometría de Masas en Tándem , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo
10.
PLoS One ; 18(12): e0295509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38096151

RESUMEN

Cowpea (Vigna unguiculata (L.) Walp) is one of the major food legume crops grown extensively in arid and semi-arid regions of the world. The determinate habit of cowpea has many advantages over the indeterminate and is well adapted to modern farming systems. Mutation breeding is an active research area to develop the determinate habit of cowpea. The present study aimed to develop new determinate habit mutants with terminal flowering (TFL) in locally well-adapted genetic backgrounds. Consequently, the seeds of popular cowpea cv P152 were irradiated with doses of gamma rays (200, 250, and, 300 Gy), and the M1 populations were grown. The M2 populations were produced from the M1 progenies and selected determinate mutants (TFLCM-1 and TFLCM-2) from the M2 generation (200 Gy) were forwarded up to the M5 generation to characterize the mutants and simultaneously they were crossed with P152 to develop a MutMap population. In the M5 generation, determinate mutants (80-81 days) were characterized by evaluating the TFL growth habit, longer peduncles (30.75-31.45 cm), erect pods (160°- 200°), number of pods per cluster (4-5 nos.), and early maturity. Further, sequencing analysis of the VuTFL1 gene in the determinate mutants and MutMap population revealed a single nucleotide transversion (A-T at 1196 bp) in the fourth exon and asparagine (N) to tyrosine (Y) amino acid change at the 143rd position of phosphatidylethanolamine-binding protein (PEBP). Notably, the loss of function PEPB with a higher confidence level modification of anti-parallel beta-sheets and destabilization of the protein secondary structure was observed in the mutant lines. Quantitative real-time PCR (qRT-PCR) analysis showed that the VuTFL1 gene was downregulated at the flowering stage in TFL mutants. Collectively, the insights garnered from this study affirm the effectiveness of induced mutation in modifying the plant's ideotype. The TFL mutants developed during this investigation have the potential to serve as a valuable resource for fostering determinate traits in future cowpea breeding programs and pave the way for mechanical harvesting.


Asunto(s)
Vigna , Vigna/genética , Proteínas de Unión a Fosfatidiletanolamina/genética , Fitomejoramiento , Mutagénesis , Mutación
11.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37837422

RESUMEN

Bixin, the key pigment of Bixa orellana L., is an apo-carotenoid found in the seed arils. The present study aimed to quantitatively determine the bixin content of seeds and explore its anti-cancer activity through in silico studies. The bixin content from the seeds of the local genotype, TNMTP8, quantified by RP-HPLC was 4.58 mg per gram. The prediction of pharmacological activity suggested that bixin may serve as a BRAF, MMP9, TNF expression inhibitors, and TP53 expression enhancer. According to molecular docking analysis, bixin interacted with eight different skin cancer targets and had the lowest binding energy compared to the standard drug, 5-fluorouracil. The binding score between bixin and the targets ranged from -4.7 to -8.7 kcal/mol. The targets BRAF and SIRT3 interacted well with bixin, with binding energies as low as -8.3 and -8.7 kcal/mol, respectively. Hence, the dynamic behavior of these two docked complexes throughout a 500 ns trajectory run was investigated further. The Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) values, and total contacts as a function of time recorded during scrutiny suggest that both complexes were stable. This was validated by post-molecular dynamics analysis using Molecular Mechanics Generalized Born Surface Area (MM-GBSA). Principal component analysis (PCA) was used to analyze the significant differences in motion exhibited by BRAF-Bixin and SIRT3-Bixin. The results showed that bixin is a promising source for potential treatment interventions in skin cancer therapies.Communicated by Ramaswamy H. Sarma.

12.
Plants (Basel) ; 12(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447095

RESUMEN

Mung bean, a legume, is sensitive to abiotic stresses at different growth stages, and its yield potential is affected by drought and high-temperature stress at the sensitive stage. Melatonin is a multifunctional hormone that plays a vital role in plant stress defense mechanisms. This study aimed to evaluate the efficiency of melatonin under individual and combined drought and high-temperature stress in mung bean. An experiment was laid out with five treatments, including an exogenous application of 100 µM melatonin as a seed treatment, foliar spray, and a combination of both seed treatment and foliar spray, as well as absolute control (ambient condition) and control (stress without melatonin treatment). Stresses were imposed during the mung bean's reproductive stage (31-40 DAS) for ten days. Results revealed that drought and high-temperature stress significantly decreased chlorophyll index, Fv/Fm ratio, photosynthetic rate, stomatal conductance, and transpiration rate through increased reactive oxygen species (ROS) production. Foliar application of melatonin at 100 µM concentration enhanced the activity of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase and the concentration of metabolites involved in osmoregulation and ion homeostasis; thereby, it improves physiological and yield-related traits in mung bean under individual and combined stress at the reproductive stage.

13.
Front Microbiol ; 14: 1186510, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426017

RESUMEN

Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of ß-catenin protein results in activation of canonical Wingless (Wnt)/ß-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering ß-catenin protein stabilization and induction of ß-catenin mediated transcriptional activity. Functionally, the activated ß-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with ß-catenin inhibitors and A549 cells lacking optimal ß-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent ß-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of ß-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the ß-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.

14.
Sci Rep ; 13(1): 9166, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280310

RESUMEN

A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). 24-(S)-hydroxycholesterol (24HC), a structural isomer of 25HC, plays a critical role in cholesterol homeostasis in the human brain and is implicated in multiple inflammatory conditions, including Alzheimer's disease. However, whether 24HC can induce a proinflammatory response like 25HC in non-neuronal cells has not been studied and remains unknown. The aim of this study was to examine whether 24HC produces such an immune response using in silico and in vitro experiments. Our results indicate that despite being a structural isomer of 25HC, 24HC binds at site II in a distinct binding mode, engages in varied residue interactions, and produces significant conformational changes in the specificity-determining loop (SDL). In addition, our surface plasmon resonance (SPR) study reveals that 24HC could directly bind to integrin αvß3, with a binding affinity three-fold lower than 25HC. Furthermore, our in vitro studies with macrophages support the involvement of FAK and NFκB signaling pathways in triggering 24HC-mediated production of TNF. Thus, we have identified 24HC as another oxysterol that binds to integrin αvß3 and promotes a proinflammatory response via the integrin-FAK-NFκB pathway.


Asunto(s)
Hidroxicolesteroles , Integrina alfaVbeta3 , Simulación por Computador , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Hidroxicolesteroles/química , Hidroxicolesteroles/metabolismo , Inflamación/metabolismo , Transducción de Señal , Macrófagos/metabolismo , Modelos Moleculares , Termodinámica , Conformación Proteica , Resonancia por Plasmón de Superficie , Colesterol 24-Hidroxilasa/metabolismo
15.
Biophys J ; 122(5): 849-867, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36721367

RESUMEN

In mammalian cells, all-trans farnesol, a 15-carbon isoprenol, is a product of the mevalonate pathway. It is the natural substrate of alcohol dehydrogenase and a substrate for CYP2E1, two enzymes implicated in ethanol metabolism. Studies have shown that farnesol is present in the human brain and inhibits voltage-gated Ca2+ channels at much lower concentrations than ethanol. Here we show that farnesol modulates the activity of γ-aminobutyric acid type A receptors (GABAARs), some of which also mediate the sedative activity of ethanol. Electrophysiology experiments performed in HEK cells expressing human α1ß3γ2 or α6ß3γ2 GABAARs revealed that farnesol increased chloride currents through positive allosteric modulation of these receptors and showed dependence on both the alcoholic functional group of farnesol and the length of the alkyl chain for activity. In silico studies using long-timescale unbiased all-atom molecular dynamics (MD) simulations of the human α1ß3γ2 GABAA receptors revealed that farnesol modulates the channel by directly binding to the transmembrane neurosteroid-binding site, after partitioning into the surrounding membrane and reaching the receptor by lateral diffusion. Channel activation by farnesol was further characterized by several structural and dynamic variables, such as global twisting of the receptor's extracellular domain, tilting of the transmembrane M2 helices, radius, cross-sectional area, hydration status, and electrostatic potential of the channel pore. Our results expand the pharmacological activities of farnesol to yet another class of ion channels implicated in neurotransmission, thus providing a novel path for understanding and treatment of diseases involving GABAA receptor dysfunction.


Asunto(s)
Neuroesteroides , Receptores de GABA-A , Humanos , Sitios de Unión , Farnesol/farmacología , Ácido gamma-Aminobutírico/farmacología , Dominios Proteicos , Receptores de GABA-A/metabolismo
16.
J Med Chem ; 65(18): 12240-12255, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36066412

RESUMEN

A growing number of G-protein-coupled receptor (GPCR) structures reveal novel transmembrane lipid-exposed allosteric sites. Ligands must first partition into the surrounding membrane and take lipid paths to these sites. Remarkably, a significant part of the bound ligands appears exposed to the membrane lipids. The experimental structures do not usually account for the surrounding lipids, and their apparent contribution to ligand access and binding is often overlooked and poorly understood. Using classical and enhanced molecular dynamics simulations, we show that membrane lipids are critical in the access and binding of ORG27569 and its analogs at the transmembrane site of cannabinoid CB1 receptor. The observed differences in the binding affinity and cooperativity arise from the functional groups that interact primarily with lipids. Our results demonstrate the significance of incorporating membrane lipids as an integral component of transmembrane sites for accurate characterization, binding-affinity calculations, and lead optimization in drug discovery.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB1 , Regulación Alostérica , Sitio Alostérico , Indoles , Ligandos , Lípidos de la Membrana , Piperidinas , Unión Proteica , Receptor Cannabinoide CB1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
Sci Rep ; 12(1): 8551, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595742

RESUMEN

Maize (Zea mays L.) is the leading cereal crop and staple food in many parts of the world. This study aims to develop nutrient-rich maize genotypes by incorporating crtRB1 and o2 genes associated with increased ß-carotene, lysine, and tryptophan levels. UMI1200 and UMI1230, high quality maize inbreds, are well-adapted to tropical and semi-arid regions in India. However, they are deficient in ß-carotene, lysine, and tryptophan. We used the concurrent stepwise transfer of genes by marker-assisted backcross breeding (MABB) scheme to introgress crtRB1 and o2 genes. In each generation (from F1, BC1F1-BC3F1, and ICF1-ICF3), foreground and background selections were carried out using gene-linked (crtRB1 3'TE and umc1066) and genome-wide simple sequence repeats (SSR) markers. Four independent BC3F1 lines of UMI1200 × CE477 (Cross-1), UMI1200 × VQL1 (Cross-2), UMI1230 × CE477 (Cross-3), and UMI1230 × VQL1 (Cross-4) having crtRB1 and o2 genes and 87.45-88.41% of recurrent parent genome recovery (RPGR) were intercrossed to generate the ICF1-ICF3 generations. Further, these gene pyramided lines were examined for agronomic performance and the ß-carotene, lysine, and tryptophan contents. Six ICF3 lines (DBT-IC-ß1σ4-4-8-8, DBT-IC-ß1σ4-9-21-21, DBT-IC-ß1σ4-10-1-1, DBT-IC-ß2σ5-9-51-51, DBT-IC-ß2σ5-9-52-52 and DBT-IC-ß2σ5-9-53-53) possessing crtRB1 and o2 genes showed better agronomic performance (77.78-99.31% for DBT-IC-ß1σ4 population and 85.71-99.51% for DBT-IC-ß2σ5 population) like the recurrent parents and ß-carotene (14.21-14.35 µg/g for DBT-IC-ß1σ4 and 13.28-13.62 µg/g for DBT-IC-ß2σ5), lysine (0.31-0.33% for DBT-IC-ß1σ4 and 0.31-0.34% for DBT-IC-ß2σ5), and tryptophan (0.079-0.082% for DBT-IC-ß1σ4 and 0.078-0.083% for DBT-IC-ß2σ5) levels on par with that of the donor parents. In the future, these improved lines could be developed as a cultivar for various agro-climatic zones and also as good genetic materials for maize nutritional breeding programs.


Asunto(s)
Zea mays , beta Caroteno , Marcadores Genéticos , Lisina/genética , Fitomejoramiento , Triptófano/genética , Zea mays/genética , beta Caroteno/genética
18.
Front Plant Sci ; 13: 1036592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589076

RESUMEN

Turmeric is an important commercial crop widely grown in Asia due to its pharmacological and nutritional value. India is the centre of turmeric diversity and many turmeric accessions have good rhizome yield, varying curcuminoids content and are well-adapted to various agro-climatic zones. In the present study, we unravel the diversity among 200 Indian turmeric accessions based on rhizome yield traits and curcuminoids content. Clustering and correlation studies were also performed to group the turmeric accessions and to observe the relationship between the traits. Results revealed the presence of large variability among turmeric accessions including the major traits such as yield (24.77 g p-1 to 667.63 g p-1), dry recovery percentage (13.42% to 29.18%), curcumin (0.41% to 2.17%), demethoxycurcumin (0.38% to 1.45%), bisdemethoxycurcumin (0.37% to 1.24%) and total curcuminoid content (1.26% to 4.55%). The superior germplasm identified for curcuminoids content were as follows; curcumin (CL 157 - 2.17% and CL 272 - 2.13%), demethoxycurcumin (CL 253 - 1.45% and CL 157 - 1.31%), bisdemethoxycurcumin (CL 216 - 1.24% and CL 57 - 1.11%) and total curcuminoid content (CL 157 - 4.55% and CL 272 - 4.37%). Clustering based on dendrogram, grouped 200 accessions into seven clusters. Among seven clusters, the maximum number of accessions were grouped into cluster II while cluster VII showed maximum mean value for majority of the traits. Correlation analysis revealed a significant relationship between the traits where the total curcuminoid content is significantly and positively correlated with the primary rhizome core diameter and length of the secondary rhizome. The selection of these particular traits may result in the identification of germplasm with high total curcuminoid content. Taken together, it is the first report on the large screening of turmeric accessions for variation in the rhizome yield traits and curcuminoids content. The genetic diversity revealed in this study could be useful for further crop improvement programs in turmeric to develop new varieties with high rhizome yield coupled with high curcuminoids content.

19.
Mol Pharmacol ; 100(4): 406-427, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34334369

RESUMEN

The drugs salmeterol, formoterol, and salbutamol constitute the frontline treatment of asthma and other chronic pulmonary diseases. These drugs activate the ß2-adrenergic receptors (ß2-AR), a class A G protein-coupled receptor (GPCR), and differ significantly in their clinical onset and duration of actions. According to the microkinetic model, the long duration of action of salmeterol and formoterol compared with salbutamol were attributed, at least in part, to their high lipophilicity and increased local concentrations in the membrane near the receptor. However, the structural and molecular bases of how the lipophilic drugs reach the binding site of the receptor from the surrounding membrane remain unknown. Using a variety of classic and enhanced molecular dynamics simulation techniques, we investigated the membrane partitioning characteristics, binding, and unbinding mechanisms of the ligands. The obtained results offer remarkable insight into the functional role of membrane lipids in the ligand association process. Strikingly, salmeterol entered the binding site from the bilayer through transmembrane helices 1 and 7. The entry was preceded by membrane-facilitated rearrangement and presentation of its phenyl-alkoxy-alkyl tail as a passkey to an access route gated by F193, a residue known to be critical for salmeterol's affinity. Formoterol's access is through the aqueous path shared by other ß2-AR agents. We observed a novel secondary path for salbutamol that is distinct from its primary route. Our study offers a mechanistic description for the membrane-facilitated access and binding of ligands to a membrane protein and establishes a groundwork for recognizing membrane lipids as an integral component in the molecular recognition process. SIGNIFICANCE STATEMENT: The cell membrane's functional role behind the duration of action of long-acting ß2-adrenergic receptor (ß2-AR) agonists such as salmeterol has been a subject of debate for a long time. This study investigated the binding and unbinding mechanisms of the three commonly used ß2-AR agonists, salmeterol, formoterol, and salbutamol, using advanced simulation techniques. The obtained results offer unprecedented insights into the active role of membrane lipids in facilitating access and binding of the ligands, affecting the molecular recognition process and thus their pharmacology.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Membrana Celular/metabolismo , Simulación del Acoplamiento Molecular/métodos , Albuterol/química , Albuterol/metabolismo , Sitios de Unión/fisiología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Fumarato de Formoterol/química , Fumarato de Formoterol/metabolismo , Humanos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Xinafoato de Salmeterol/química , Xinafoato de Salmeterol/metabolismo
20.
Genes (Basel) ; 12(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069791

RESUMEN

In the North Eastern Himalayan region (NEHR) of India, maize is an important food crop. The local people cultivate the maize landraces and consume them as food. However, these landraces are deficient in ß-carotene content. Thus, we aimed to incorporate the crtRB1 gene from UMI285ß+ into the genetic background of the NEHR maize landrace, Yairipok Chujak (CAUM66), and thereby enhance the ß-carotene content through marker-assisted backcrossing (MABC). In this regard, we backcrossed and screened BC1F1 and BC2F1 plants possessing the heterozygous allele for crtRB1 and then screened with 106 polymorphic simple sequence repeat (SSR) markers. The plants having maximum recurrent parent genome recovery (RPGR) were selected in each generation and selfed to produce BC2F2 seeds. In the BC2F2 generation, four plants (CAUM66-54-9-12-2, CAUM66-54-9-12-11, CAUM66-54-9-12-13, and CAUM66-54-9-12-24) having homozygous crtRB1-favorable allele with maximum RPGR (86.74-90.16%) were selected and advanced to BC2F3. The four selected plants were selfed to produce BC2F3 and then evaluated for agronomic traits and ß-carotene content. The agronomic performance of the four lines was similar (78.83-99.44%) to that of the recurrent parent, and ß-carotene content (7.541-8.711 µg/g) was on par with the donor parent. Our study is the first to improve the ß-carotene content in NEHR maize landrace through MABC. The newly developed lines could serve as potential resources to further develop nutrition-rich maize lines and could provide genetic stock for use in breeding programs.


Asunto(s)
Genes de Plantas/genética , Marcadores Genéticos/genética , Zea mays/genética , beta Caroteno/genética , Alelos , Endogamia/métodos , India , Repeticiones de Microsatélite/genética , Fenotipo , Fitomejoramiento/métodos , Polimorfismo Genético/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA