Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1868(5): 130596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471632

RESUMEN

BACKGROUND: Clear cell Renal Cell Carcinoma (ccRCC) is the frequently diagnosed histological life-threatening tumor subtype in the urinary system. Integrating multi-omics data is emerging as a tool to provide a comprehensive view of biology and disease for better therapeutic interventions. METHOD: We have integrated freely available ccRCC data sets of genome-wide DNA methylome, transcriptome, and active histone modification marks, H3K27ac, H3K4me1, and H3K4me3 specific ChIP-seq data to screen genes with higher expression. Further, these genes were filtered based on their effect on survival upon alteration in expression. RESULTS: The six multi-omics-based identified genes, RUNX1, MSC, ADA, TREML1, TGFA, and VWF, showed higher expression with enrichment of active histone marks and hypomethylated CpG in ccRCC. In continuation, the identified genes were validated by an independent dataset and showed a correlation with nodal and metastatic status. Furthermore, gene ontology and pathway analysis revealed that immune-related pathways are activated in ccRCC patients. CONCLUSIONS: The network analysis of six overexpressed genes suggests their potential role in an immunosuppressive environment, leading to tumor progression and poor prognosis. Our study shows that the multi-omics approach helps unravel complex biology for patient subtyping and proposes combination strategies with epi-drugs for more precise immunotherapy in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Epigenoma , Perfilación de la Expresión Génica , Transcriptoma/genética , Microambiente Tumoral/genética , Receptores Inmunológicos/genética
2.
Clin Epigenetics ; 16(1): 8, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172984

RESUMEN

Cisplatin is an alkylating class of chemotherapeutic drugs used to treat cancer patients. However, cisplatin fails in long-term treatment, and drug resistance is the primary reason for tumor recurrence. Hence, understanding the mechanism of acquirement of chemoresistance is essential for developing novel combination therapeutic approaches. In this study, in vitro cisplatin-resistant cancer cell line models were developed. Gene ontology and GSEA of differentially expressed genes between parental and resistant cells suggest that PI3K-AKT signaling, central carbon metabolism, and epigenetic-associated phenomenon alter in cisplatin-resistant cells. Further, the data showed that increased glucose transport, alteration in the activity of histone-modifying enzymes, and acetyl-CoA levels in resistant cells paralleled an increase in global histone acetylation. Enrichment of histone acetylation on effectors of PI3K-AKT and glycolysis pathway provides evidence of epigenetic regulation of the key molecules in drug resistance. Moreover, cisplatin treatment to resistant cells showed no significant changes in histone acetylation marks since drug treatment alters cell epigenome. In continuation, targeting PI3K-AKT signaling and glycolysis leads to alteration in histone acetylation levels and re-sensitization of resistant cells to chemo-drug. The data provide evidence of histone acetylation's importance in regulating pathways and cisplatin-resistant cells' cell survival. Our study paves the way for new approaches for developing personalized therapies in affecting metabolic pathways and epigenetic changes to achieve better outcomes for targeting drug-resistant cells.


Asunto(s)
Cisplatino , Neoplasias , Humanos , Cisplatino/farmacología , Histonas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epigénesis Genética , Acetilación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Metilación de ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Exp Biol Med (Maywood) ; 248(11): 948-958, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021545

RESUMEN

Replication-dependent histones have a stem-loop structure at the 3' end of messenger RNA (mRNA) and are stabilized by stem-loop binding protein (SLBP). Moreover, loss of SLBP and imbalance in the level of ARE (adenylate-uridylate-rich elements)-binding proteins, HuR, and BRF1 are associated with the polyadenylation of canonical histone mRNAs under different physiological conditions. Previous studies from the lab have shown increased protein levels of H2A1H and H3.2 in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma (HCC). In this study, we report that increase in the polyadenylation of histone mRNA contributes to increased levels of H2A1H and H3.2 in NDEA-induced HCC. The persistent exposure to carcinogen with polyadenylation of histone mRNA increases the total histone pool resulting in aneuploidy. The embryonic liver has also shown increased polyadenylated histone isoforms, Hist1h2ah and Hist2h3c2, primarily contributing to their increased protein levels. The increase in polyadenylation of histone mRNA in HCC and e15 are in coherence with the decrease in SLBP and BRF1 with an increase in HuR. Our studies in neoplastic CL38 cell line showed that direct stress on the cells induces downregulation of SLBP with enhanced histone isoform polyadenylation. Moreover, the polyadenylation is related to increase in activated MAP kinases, p38, ERK, and JNK in HCC liver tumor tissues and CL38 cells treated with arsenic. Our data suggest that SLBP degrades under stress, destabilizing the stem-loop, elongating histone isoforms mRNA with 3' polyadenylated tail with increase of HuR and decrease of BRF1. Overall, our results indicate that SLBP may play an essential part in cell proliferation, at least in persistent exposure to stress, by mediating the stabilization of histone isoforms throughout the cell cycle.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Factores Asociados con la Proteína de Unión a TATA , Humanos , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Poliadenilación , Carcinoma Hepatocelular/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Hepatocitos/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo
4.
Biochem Biophys Res Commun ; 648: 1-10, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724554

RESUMEN

Acquired chemoresistance against doxorubicin remains an obstacle in long-term treatment. The comprehensive molecular mechanism underlying the acquirement of doxorubicin resistance has not been reported. The objective of the present study is to understand the survival strategies and investigate alternate treatments for doxorubicin-resistant cervical and liver cancer cells. In this study, doxorubicin-resistant sublines were established by continuous incremental exposure of the drug to parental cervical and liver cancer cells. The transcriptome data in drug-resistant model revealed downregulated energy production pathways like glycolysis, oxidative phosphorylation, and mTOR signalling. This resulted in slow proliferation and altered mitochondrial changes in doxorubicin-resistant cells. The altered metabolic state of the resistant cells was associated with hypo-acetylation of chromatin. Pre-treatment with HDACi sensitized the drug-resistant cells to doxorubicin by increased drug accumulation in the cells, thereby leading to apoptosis. Additionally, we demonstrated that autophagy gets activated in doxorubicin-resistant cervical and liver cancer cells. Autophagy acts as pro-survival mechanism in resistant cells, as inhibition of autophagy leads to cell death. In conclusion, the data highlights survival ability of resistant cells with mitochondrial dysfunction, altered chromatin state, and pro-survival autophagy. The study proposes targeting chromatin alteration with the combinatorial treatment of HDACi with doxorubicin or survival mechanism through autophagy inhibitor against doxorubicin-resistant cancer phenotype.


Asunto(s)
Cromatina , Neoplasias Hepáticas , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Doxorrubicina/farmacología , Autofagia , Apoptosis , Neoplasias Hepáticas/tratamiento farmacológico , Mitocondrias
5.
World J Hepatol ; 13(11): 1568-1583, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34904030

RESUMEN

Liver cancer is the sixth most commonly occurring cancer and costs millions of lives per year. The diagnosis of hepatocellular carcinoma (HCC) has relied on scanning techniques and serum-based markers such as α-fetoprotein. These measures have limitations due to their detection limits and asymptomatic conditions during the early stages, resulting in late-stage cancer diagnosis where targeted chemotherapy or systemic treatment with sorafenib is offered. However, the aid of conventional therapy for patients in the advanced stage of HCC has limited outcomes. Thus, it is essential to seek a new treatment strategy and improve the diagnostic techniques to manage the disease. Researchers have used the omics profile of HCC patients for sub-classification of tissues into different groups, which has helped us with prognosis. Despite these efforts, a promising target for treatment has not been identified. The hurdle in this situation is genetic and epigenetic variations in the tumor, leading to disparities in response to treatment. Understanding reversible epigenetic changes along with clinical traits help to define new markers for patient categorization and design personalized therapy. Many clinical trials of inhibitors of epigenetic modifiers (also known as epi-drugs) are in progress. Epi-drugs like azacytidine or belinostat are already approved for other cancer treatments. Furthermore, epigenetic changes have also been observed in drug-resistant HCC tumors. In such cases, combinatorial treatment of epi-drugs with systemic therapy or trans-arterial chemoembolization might re-sensitize resistant cells.

6.
Mol Biol Rep ; 48(12): 7967-7974, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34657252

RESUMEN

BACKGROUND: Reference genes are considered stable genes and are used for normalizing the gene expression profile across different cell types; as well as, in normal and diseased samples. However, these gene associates with different biological processes, and hence expression vary in different pathological conditions. Therefore, in the present study, eight different reference genes were used and compared to identify common reference gene usable for an array of different cell types and human cancers. METHODS AND RESULTS: The expression stability of the eight reference genes across eleven normal and cancerous tissues was confirmed through real time-qPCR. Ribosomal protein S13 (RPS13) was found to be a common and stable reference gene across intra- and inter-comparison between various normal and tumor tissue types. Further, TCGA data analysis across and between normal and tumor tissue types also showed minimum deviation in expression of RPS13 gene out of eight routinely used reference genes. CONCLUSION: RPS13 is the common stable reference gene in normalization for gene expression based analysis in cancer research.


Asunto(s)
Perfilación de la Expresión Génica/normas , Neoplasias/genética , Proteínas Ribosómicas/genética , Bases de Datos Genéticas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Proteínas Ribosómicas/metabolismo , Transcriptoma/genética
7.
Chonnam Med J ; 57(3): 176-184, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34621637

RESUMEN

Histone modifications have been demonstrated to play a significant role in oral squamous cell carcinoma (OSCC) epigenetic regulation. An in-silico analysis of The Cancer Genome Atlas (TCGA) of various histone acetyl transferases (HATs) and histone deacetylases (HDACs) suggested that HATs do not differ between normal and tumor samples whereas HDAC2 and HDAC1 change maximally and marginally respectively between normal and tumor patients with no change being noted in HDAC6 expression. Hence, this investigation was carried out to validate the expression states of HDAC 1, 2 and 6 mRNAs in buccal mucosa and tongue SCC samples in an Indian cohort. Buccal mucosa and tongue squamous cell carcinoma tissues with intact histopathology were processed for RNA isolation followed by cDNA synthesis which was then subjected to q-PCR for HDACs. The average RNA yield of the tongue tissue sample was ∼2 µg/mg of tissue and the A260/280 ratios were between 2.03 and 2.06. The average RNA yield of buccal mucosa tissue sample was ∼1 µg/mg of tissue and the A260/280 ratio were between 2.00 and 2.08. We have demonstrated that HDAC2 was overexpressed in tongue and buccal mucosa samples. Over-expression of HDAC2 imply potential use of HDACi along with standard chemotherapeutic drug in oral cancer treatment.

8.
Epigenetics Chromatin ; 13(1): 31, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32746900

RESUMEN

BACKGROUND: Epigenetics research is progressing in basic, pre-clinical and clinical studies using various model systems. Hence, updating the knowledge and integration of biological data emerging from in silico, in vitro and in vivo studies for different epigenetic factors is essential. Moreover, new drugs are being discovered which target various epigenetic proteins, tested in pre-clinical studies, clinical trials and approved by the FDA. It brings distinct challenges as well as opportunities to update the existing HIstome database for implementing and applying enormous data for biomedical research. RESULTS: HISTome2 focuses on the sub-classification of histone proteins as variants and isoforms, post-translational modifications (PTMs) and modifying enzymes for humans (Homo sapiens), rat (Rattus norvegicus) and mouse (Mus musculus) on one interface for integrative analysis. It contains 232, 267 and 350 entries for histone proteins (non-canonical/variants and canonical/isoforms), PTMs and modifying enzymes respectively for human, rat, and mouse. Around 200 EpiDrugs for various classes of epigenetic modifiers, their clinical trial status, and pharmacological relevance have been provided in HISTome2. The additional features like 'Clustal omega' for multiple sequence alignment, link to 'FireBrowse' to visualize TCGA expression data and 'TargetScanHuman' for miRNA targets have been included in the database. CONCLUSION: The information for multiple organisms and EpiDrugs on a common platform will accelerate the understanding and future development of drugs. Overall, HISTome2 has significantly increased the extent and diversity of its content which will serve as a 'knowledge Infobase' for biologists, pharmacologists, and clinicians. HISTome2: The HISTone Infobase is freely available on http://www.actrec.gov.in/histome2/ .


Asunto(s)
Bases de Datos Farmacéuticas , Bases de Datos de Proteínas , Código de Histonas , Histonas/metabolismo , Programas Informáticos , Animales , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Epigénesis Genética , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histonas/química , Histonas/efectos de los fármacos , Humanos , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA