Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057857

RESUMEN

This work discusses the applicability of lightweight aggregate-encapsulated n-octadecane with 1.0 wt.% of Cu nanoparticles, for enhanced thermal comfort in buildings by providing thermal energy storage functionality to no-fines concrete. A straightforward two-step procedure (impregnation and occlusion) for the encapsulation of the nano-additivated phase change material in lightweight aggregates is presented. Encapsulation efficiencies of 30-40% are achieved. Phase change behavior is consistent across cycles. Cu nanoparticles provide nucleation points for phase change and increase the rate of progression of phase change fronts due to the enhancement in the effective thermal conductivity of n-octadecane. The effective thermal conductivity of the composites remains like that of regular lightweight aggregates and can still fulfil thermal insulation requirements. The thermal response of no-fines concrete blocks prepared with these new aggregates is also studied. Under artificial sunlight, with a standard 1000 W·m-2 irradiance and AM1.5G filter, concrete samples with the epoxy-coated aggregate-encapsulated n-octadecane-based dispersion of Cu nanoparticles (with a phase change material content below 8% of the total concrete mass) can effectively maintain a significant 5 °C difference between irradiated and non-irradiated sides of the block for ca. 30 min.

2.
Nanoscale ; 16(17): 8470-8478, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38590267

RESUMEN

Transition metal dichalcogenides, including WSe2, have gained significant attention as promising nanomaterials for various applications due to their unique properties. In this study, we explore the temperature-dependent photoluminescent properties of WSe2 nanomaterials to investigate their potential as luminescent nanothermometers. We compare the performance of WSe2 quantum dots and nanorods synthesized using sonication synthesis and hot injection methods. Our results show a distinct temperature dependence of the photoluminescence, and conventional ratiometric luminescence thermometry demonstrates comparable relative thermal sensitivity (0.68-0.80% K-1) and temperature uncertainty (1.3-1.5 K), irrespective of the morphology of the nanomaterials. By applying multiple linear regression to WSe2 quantum dots, we achieve enhanced thermal sensitivity (30% K-1) and reduced temperature uncertainty (0.1 K), highlighting the potential of WSe2 as a versatile nanothermometer for microfluidics, nanofluidics, and biomedical assays.

3.
J Chem Phys ; 160(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38174796

RESUMEN

The significance of interfacial thermal resistance in the thermal conductivity of nanofluids is not well understood, in part because of the absence of measurements of this quantity. Here, we study the interfacial thermal resistance for metal-oil nanofluids of interest as heat transfer fluids for concentrating solar power, using density functional theory and molecular dynamics simulations. Insights on the role of chemical interactions in determining the interfacial thermal resistance are revealed. The results presented here showcase a general picture in which the stronger the chemical interactions between species at the interface, the lower the associated interfacial thermal resistance. The implications toward nanofluid design are discussed. We show that, for this important family of metal-oil nanofluids, the interfacial thermal resistance values are low enough so that it is possible to afford a reduction in particle size, minimizing stability and rheological issues while still offering enhancement in the effective thermal conductivity with respect to the base fluid.

4.
Chem Sci ; 14(26): 7114-7125, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37416716

RESUMEN

The structure and chemistry of metal-organic frameworks or MOFs dictate their properties and functionalities. However, their architecture and form are essential for facilitating the transport of molecules, the flow of electrons, the conduction of heat, the transmission of light, and the propagation of force, which are vital in many applications. This work explores the transformation of inorganic gels into MOFs as a general strategy to construct complex porous MOF architectures at nano, micro, and millimeter length scales. MOFs can be induced to form along three different pathways governed by gel dissolution, MOF nucleation, and crystallization kinetics. Slow gel dissolution, rapid nucleation, and moderate crystal growth result in a pseudomorphic transformation (pathway 1) that preserves the original network structure and pores, while a comparably faster crystallization displays significant localized structural changes but still preserves network interconnectivity (pathway 2). MOF exfoliates from the gel surface during rapid dissolution, thus inducing nucleation in the pore liquid leading to a dense assembly of percolated MOF particles (pathway 3). Thus, the prepared MOF 3D objects and architectures can be fabricated with superb mechanical strength (>98.7 MPa), excellent permeability (>3.4 × 10-10 m2), and large surface area (1100 m2 g-1) and mesopore volumes (1.1 cm3 g-1).

5.
Heliyon ; 9(6): e16775, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292308

RESUMEN

Perovskite-type materials have attracted great attention in recent times due to their interesting characteristics, such as their luminescent properties. The good photoluminescence quantum yields as well as the possibility of tuning the emission wavelength has allowed the study of these materials in several applications, such as sensors or LEDs. As sensors, making nanocrystals of these perovskites emitting in the near infrared (NIR) would open the possibility of using these materials in biomedical applications. In the present work, Pd-doped CsPbBr3 perovskite nanocrystals (NCs) were synthesized and characterized. We show here Pd-doped NCs synthesized emit in NIR, at about 875 nm, using a laser emitting at 785 nm as the excitation source. This result is really new and promising, because it opens the possibility of using these nanocrystals in many applications as sensor in the field of nanobiomedicine in the future.

6.
Mol Plant ; 16(5): 865-881, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37002606

RESUMEN

Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fusarium , Pectinas , Inmunidad de la Planta , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Metilación , Pectinas/metabolismo , Proteínas Quinasas/metabolismo , Fusarium/inmunología
7.
Cancer Gene Ther ; 30(7): 1029-1039, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37016144

RESUMEN

cGAMP-specific nucleases (poxins) are a recently described family of proteins dedicated to obstructing cyclic GMP-AMP synthase signaling (cGAS), an important sensor triggered by cytoplasmic viral replication that activates type I interferon (IFN) production. The B2R gene of vaccinia viruses (VACV) codes for one of these nucleases. Here, we evaluated the effects of inactivating the VACV B2 nuclease in the context of an oncolytic VACV. VACV are widely used as anti-cancer vectors due to their capacity to activate immune responses directed against tumor antigens. We aimed to elicit robust antitumor immunity by preventing viral inactivation of the cGAS/STING/IRF3 pathway after infection of cancer cells. Activation of such a pathway is associated with a dominant T helper 1 (Th1) cell differentiation of the response, which benefits antitumor outcomes. Deletion of the B2R gene resulted in enhanced IRF3 phosphorylation and type I IFN expression after infection of tumor cells, while effective VACV replication remained unimpaired, both in vitro and in vivo. In syngeneic mouse tumor models, the absence of the VACV cGAMP-specific nuclease translated into improved antitumor activity, which was associated with antitumor immunity directed against tumor epitopes.


Asunto(s)
Interferón Tipo I , Poxviridae , Ratones , Animales , Poxviridae/genética , Nucleótidos Cíclicos , Virus Vaccinia/genética , Virus Vaccinia/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/genética , Inmunidad , Inmunidad Innata/genética
8.
Rev. biol. trop ; 70(1)dic. 2022.
Artículo en Inglés | SaludCR, LILACS | ID: biblio-1423033

RESUMEN

Introduction: Tropical dry forests and mangroves, two of the world's most endangered ecosystems, each host a different set of environmental conditions which may support unique assemblages of species. However, few studies have looked at the unique vertebrate biodiversity in regions where both habitats occur side-by-side. Objective: To assess the vertebrate diversity and patterns of habitat usage in a mangrove and tropical dry forest matrix in an unprotected region of Northwestern Costa Rica. Methods: The study was conducted in a 7 km2 matrix of mangrove and tropical dry forests between Cabuyal and Zapotillal bays in Northwestern Costa Rica, south of Santa Rosa National Park. From September 2017 to March 2018, we used 13 automatic camera traps over 1 498 trap days to capture species utilizing the region and assess their patterns of habitat usage both spatially and temporally. Results: Seventy vertebrate species from 42 families in 27 orders were detected, including several globally threatened species. Over half of all species were detected in only one habitat, particularly amongst avian (78 %) and mammalian (42 %) species. Tropical dry forests hosted the greatest number of unique species and supported a greater percentage of herbivores than mangrove or edge habitats, which were dominated by carnivorous and omnivorous species. Mean detections per camera trap of all species increased significantly from the coldest and wettest month (Oct) to the hottest and driest months (Jan & Feb) in tropical dry forests. Sample-based rarefaction analysis revealed that survey length was sufficient to sample the tropical dry forest and edge habitats, though mangroves require further sampling. Conclusions: Taxa found to utilize different forest types may utilize each for different stages of their life cycle, moving between areas as environmental conditions change throughout the year. General patterns of global biodiversity favoring carnivore and omnivore usage of mangrove forests was confirmed in our study.


Introducción: Los bosques secos tropicales y los manglares, dos de los ecosistemas más amenazados del mundo, albergan cada uno un grupo de condiciones ambientales que pueden albergar conjuntos únicos de especies. Sin embargo, pocos estudios han analizado la biodiversidad única de vertebrados en regiones donde ambos hábitats se encuentran uno al lado del otro. Objetivo: Evaluar la diversidad de vertebrados y los patrones de uso del hábitat en una matriz de manglar y bosque seco tropical en una región no protegida del noroeste de Costa Rica. Métodos: El estudio se realizó en una matriz de 7 km2 de manglares y bosques secos tropicales en las bahías de Cabuyal y Zapotillal en el noroeste de Costa Rica, al sur del Parque Nacional Santa Rosa. De septiembre 2017 a marzo 2018, utilizamos 13 cámaras trampa automáticas durante 1 498 días trampa para capturar especies que utilizan la región y evaluar sus patrones de uso espacial y temporal del hábitat. Resultados: Se detectaron 70 especies de vertebrados de 42 familias y 27 órdenes, incluidas varias especies amenazadas a nivel mundial. Más de la mitad de todas las especies se encontraron en un solo hábitat, particularmente aves (78 %) y mamíferos (42 %). Los bosques secos tropicales albergan el mayor número de especies únicas y sustentan un mayor porcentaje de herbívoros que los hábitats de borde de manglares, que estaban dominados u hospedados por especies carnívoras y omnívoras. Las detecciones promedio por cámara trampa de todas las especies aumentaron significativamente desde el mes más frío y húmedo (octubre) hasta los meses más cálidos y secos (enero y febrero) en los bosques secos tropicales. El análisis de rarefacción basado en muestras reveló que la duración del estudio fue suficiente para muestrear los hábitats de bosque seco tropical y de borde, aunque los manglares requieren más muestreo. Conclusiones: Se encontró que los taxones pueden usar varios tipos de bosque en las diferentes etapas de su ciclo de vida, moviéndose entre áreas a medida que las condiciones ambientales cambian a lo largo del año. En nuestro estudio se confirmaron patrones generales de la biodiversidad global que favorecen el uso de los bosques de manglar por parte de carnívoros y omnívoros.


Asunto(s)
Animales , Vertebrados/anatomía & histología , Humedales , Ecosistema Tropical , Costa Rica
9.
J Chem Inf Model ; 62(24): 6423-6435, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35576452

RESUMEN

Many key features in photovoltaic perovskites occur in relatively long time scales and involve mixed compositions. This requires realistic but also numerically simple models. In this work we present a transferable classical force field to describe the mixed hybrid perovskite MAxFA1-xPb(BryI1-y)3 for variable composition (∀x, y ∈ [0, 1]). The model includes Lennard-Jones and Buckingham potentials to describe the interactions between the atoms of the inorganic lattice and the organic molecule, and the AMBER model to describe intramolecular atomic interactions. Most of the parameters of the force field have been obtained by means of a genetic algorithm previously developed to parametrize the CsPb(BrxI1-x)3 perovskite (Balestra et al. J. Mater. Chem. A. 2020, DOI: 10.1039/d0ta03200j). The algorithm finds the best parameter set that simultaneously fits the DFT energies obtained for several crystalline structures with moderate degrees of distortion with respect to the equilibrium configuration. The resulting model reproduces correctly the XRD patterns, the expansion of the lattice upon I/Br substitution, and the thermal expansion coefficients. We use the model to run classical molecular dynamics simulations with up to 8600 atoms and simulation times of up to 40 ns. From the simulations we have extracted the ion diffusion coefficient of the pure and mixed perovskites, presenting for the first time these values obtained by a fully dynamical method using a transferable model fitted to first-principles calculations. The values here reported can be considered as the theoretical upper limit, that is, without grain boundaries or other defects, for ion migration dynamics induced by halide vacancies in photovoltaic perovskite devices under operational conditions.

10.
Front Plant Sci ; 13: 832981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463451

RESUMEN

Aluminum (Al) toxicity in acid soils influences plant development and yield. Almost 50% of arable land is acidic. Plants have evolved a variety of tolerance mechanisms for Al. In response to the presence of Al, various species exudate citrate from their roots. Rye (Secale cereale L.) secretes both citrate and malate, making it one of the most Al-tolerant cereal crops. However, no research has been done on the role of the mitochondrial citrate synthase (mCS) gene in Al-induced stress in the rye. We have isolated an mCS gene, encoding a mitochondrial CS isozyme, in two S. cereale cultivars (Al-tolerant cv. Ailés and Al-sensitive inbred rye line Riodeva; ScCS4 gene) and in two Brachypodium distachyon lines (Al-tolerant ABR8 line and Al-sensitive ABR1 line; BdCS4 gene). Both mCS4 genes have 19 exons and 18 introns. The ScCS4 gene was located on the 6RL rye chromosome arm. Phylogenetic studies using cDNA and protein sequences have shown that the ScCS4 gene and their ScCS protein are orthologous to mCS genes and CS proteins of different Poaceae plants. Expression studies of the ScCS4 and BdSC4 genes show that the amount of their corresponding mRNAs in the roots is higher than that in the leaves and that the amounts of mRNAs in plants treated and not treated with Al were higher in the Al-tolerant lines than that in the Al-sensitive lines of both species. In addition, the levels of ScCS4 and BdCS4 mRNAs were reduced in response to Al (repressive behavior) in the roots of the tolerant and sensitive lines of S. cereale and B. distachyon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA