Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
EClinicalMedicine ; 46: 101356, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35330801

RESUMEN

Background: Obesity is a predominant factor in development of type 2 diabetes but to which extent adolescent obesity influences adult diabetes is unclear. We investigated the association between body mass index (BMI) in young men and subsequent type 2 diabetes and how, in diagnosed diabetes, adolescent BMI relates to glycemic control and diabetes complications. Methods: Baseline data from the Swedish Conscript Register for men drafted 1968-2005 was combined with data from the National Diabetes and Patient registries. Diabetes risk was estimated through Cox regression and Kaplan-Meier survival estimates. Relationships between BMI, glycemic control and diabetes complications were assessed through multiple linear and logistic regression. Findings: Among 1,647,826 men, 63,957 (3·88%) developed type 2 diabetes over a median follow-up of 29.0 years (IQR[21.0-37.0]). The risk of diabetes within 40 years after conscription was nearly 40% in individuals with adolescent BMI ≥35 kg/m2. Compared to BMI 18·5-<20 kg/m2 (reference), diabetes risk increased in a linear fashion from HR 1·18(95%CI 1·15-1·21) for BMI 20-<22·5 kg/m2 to HR 15·93(95%CI 14·88-17·05) for BMI ≥35 kg/m2, and a difference in age at onset of 11·4 years was seen. Among men who developed diabetes, higher adolescent BMI was associated with higher HbA1c levels and albuminuria rates. Interpretation: Rising adolescent BMI was associated with increased risk of type 2 diabetes diagnosed at a younger age, with poorer metabolic control, and a greater prevalence of albuminuria, all suggestive of worse prognosis.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268587

RESUMEN

ObjectivesTo estimate the impact of the COVID-19 pandemic on cardiovascular disease (CVD) and CVD management using routinely collected medication data as a proxy. DesignDescriptive and interrupted time series analysis using anonymised individual-level population-scale data for 1.32 billion records of dispensed CVD medications across 15.8 million individuals in England, Scotland and Wales. SettingCommunity dispensed CVD medications with 100% coverage from England, Scotland and Wales, plus primary care prescribed CVD medications from England (including 98% English general practices). Participants15.8 million individuals aged 18+ years alive on 1st April 2018 dispensed at least one CVD medicine in a year from England, Scotland and Wales. Main outcome measuresMonthly counts, percent annual change (1st April 2018 to 31st July 2021) and annual rates (1st March 2018 to 28th February 2021) of medicines dispensed by CVD/ CVD risk factor; prevalent and incident use. ResultsYear-on-year change in dispensed CVD medicines by month were observed, with notable uplifts ahead of the first (11.8% higher in March 2020) but not subsequent national lockdowns. Using hypertension as one example of the indirect impact of the pandemic, we observed 491,203 fewer individuals initiated antihypertensive treatment across England, Scotland and Wales during the period March 2020 to end May 2021 than would have been expected compared to 2019. We estimated that this missed antihypertension treatment could result in 13,659 additional CVD events should individuals remain untreated, including 2,281 additional myocardial infarctions (MIs) and 3,474 additional strokes. Incident use of lipid-lowering medicines decreased by an average 14,793 per month in early 2021 compared with the equivalent months prior to the pandemic in 2019. In contrast, the use of incident medicines to treat type-2 diabetes (T2DM) increased by approximately 1,642 patients per month. ConclusionsManagement of key CVD risk factors as proxied by incident use of CVD medicines has not returned to pre-pandemic levels in the UK. Novel methods to identify and treat individuals who have missed treatment are urgently required to avoid large numbers of additional future CVD events, further adding indirect cost of the COVID-19 pandemic.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265312

RESUMEN

BackgroundUpdatable understanding of the onset and progression of individuals COVID-19 trajectories underpins pandemic mitigation efforts. In order to identify and characterize individual trajectories, we defined and validated ten COVID-19 phenotypes from linked electronic health records (EHR) on a nationwide scale using an extensible framework. MethodsCohort study of 56.6 million people in England alive on 23/01/2020, followed until 31/05/2021, using eight linked national datasets spanning COVID-19 testing, vaccination, primary & secondary care and death registrations data. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity using a combination of international clinical terminologies (e.g. SNOMED-CT, ICD-10) and bespoke data fields; positive test, primary care diagnosis, hospitalisation, critical care (four phenotypes), and death (three phenotypes). Using these phenotypes, we constructed patient trajectories illustrating the transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FindingsWe identified 3,469,528 infected individuals (6.1%) with 8,825,738 recorded COVID-19 phenotypes. Of these, 364,260 (11%) were hospitalised and 140,908 (4%) died. Of those hospitalised, 38,072 (10%) were admitted to intensive care (ICU), 54,026 (15%) received non-invasive ventilation and 21,404 (6%) invasive ventilation. Amongst hospitalised patients, first wave mortality (30%) was higher than the second (23%) in non-ICU settings, but remained unchanged for ICU patients. The highest mortality was for patients receiving critical care outside of ICU in wave 1 (51%). 13,083 (9%) COVID-19 related deaths occurred without diagnoses on the death certificate, but within 30 days of a positive test while 10,403 (7%) of cases were identified from mortality data alone with no prior phenotypes recorded. We observed longer patient trajectories in the second pandemic wave compared to the first. InterpretationOur analyses illustrate the wide spectrum of severity that COVID-19 displays and significant differences in incidence, survival and pathways across pandemic waves. We provide an adaptable framework to answer questions of clinical and policy relevance; new variant impact, booster dose efficacy and a way of maximising existing data to understand individuals progression through disease states. Research in ContextO_ST_ABSEvidence before the studyC_ST_ABSWe searched PubMed on October 14, 2021, for publications with the terms "COVID-19" or "SARS-CoV-2", "severity", and "electronic health records" or "EHR" without date or language restrictions. Multiple studies explore factors associated with severity of COVID-19 infection, and model predictions of outcome for hospitalised patients. However, most work to date focused on isolated facets of the healthcare system, such as primary or secondary care only, was conducted in subpopulations (e.g. hospitalised patients) of limited sample size, and often utilized dichotomised outcomes (e.g. mortality or hospitalisation) ignoring the full spectrum of disease. We identified no studies which comprehensively detailed severity of infections while describing disease severity across pandemic waves, vaccination status, and patient trajectories. Added value of this studyTo our knowledge, this is the first study providing a comprehensive view of COVID-19 across pandemic waves using national data and focusing on severity, vaccination, and patient trajectories. Drawing on linked electronic health record (EHR) data on a national scale (56.6 million people alive and registered with GP in England), we describe key demographic factors, frequency of comorbidities, impact of the two main waves in England, and effect of full vaccination on COVID-19 severities. Additionally, we identify and describe patient trajectory networks which illustrate the main transition pathways of COVID-19 patients in the healthcare system. Finally, we provide reproducible COVID-19 phenotyping algorithms reflecting clinically relevant stages of disease severity i.e. positive tests, primary care diagnoses, hospitalisation, critical care treatments (e.g. ventilatory support) and mortality. Implications of all the available evidenceThe COVID-19 phenotypes and trajectory analysis framework outlined produce a reproducible, extensible and repurposable means to generate national-scale data to support critical policy decision making. By modelling patient trajectories as a series of interactions with healthcare systems, and linking these to demographic and outcome data, we provide a means to identify and prioritise care pathways associated with adverse outcomes and highlight healthcare system touch points which may act as tangible targets for intervention.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21251043

RESUMEN

ObjectiveAn unexpectedly large number of people infected with Covid-19 had experienced a thrombotic event. This study aims to assess the associations between Covid-19 infection and thromboembolism including myocardial infarction (MI), ischaemic stroke, deep-vein thrombosis (DVT), and pulmonary embolism (PE). Patients and MethodsA self-controlled case-series study was conducted covering the whole of Scotlands general population. The study population comprised individuals with confirmed (positive test) Covid-19 and at least one thromboembolic event between March 2018 and October 2020. Their incidence rates during the risk interval (5 days before to 56 days after the positive test) and the control interval (the remaining periods) were compared intra-personally. ResultsAcross Scotland, 1,449 individuals tested positive for Covid-19 and experienced a thromboembolic event. The risk of thromboembolism was significantly elevated over the whole risk period but highest in the 7 days following the positive test (IRR 12.01, 95% CI 9.91-14.56) in all included individuals. The association was also present in individuals not originally hospitalised for Covid-19 (IRR 4.07, 95% CI 2.83-5.85). Risk of MI, stroke, PE and DVT were all significantly higher in the week following a positive test. The risk of PE and DVT was particularly high and remained significantly elevated even 56 days following the test. ConclusionConfirmed Covid-19 infection was associated with early elevations in risk with MI, ischaemic stroke, and substantially stronger and prolonged elevations with DVT and PE both in hospital and community settings. Clinicians should consider thromboembolism, especially PE, among people with Covid-19 in the community.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20140921

RESUMEN

PurposeVitamin D has been proposed as a potential causal factor in COVID-19 risk. We aimed to establish whether blood 25-hydroxyvitamin D (25(OH)D) concentration was associated with COVID-19 mortality, and inpatient confirmed COVID-19 infection, in UK Biobank participants. MethodsUK Biobank recruited 502,624 participants aged 37-73 years between 2006 and 2010. Baseline exposure data, including 25(OH)D concentration, were linked to COVID-19 mortality. Univariable and multivariable Cox proportional hazards regression analyses were performed for the association between 25(OH)D and COVID-19 death, and poisson regression analyses for the association between 25(OH)D and severe COVID-19 infection. ResultsComplete data were available for 341,484 UK Biobank participants, of which 656 had inpatient confirmed COVID-19 infection and 203 died of COVID-19 infection. Vitamin D was associated with severe COVID-19 infection and mortality univariably (mortality HR=0.99; 95% CI 0.98-0.998; p=0.016), but not after adjustment for confounders (mortality HR=0.998; 95% CI=0.99-1.01; p=0.696). ConclusionsOur findings do not support a potential link between vitamin D concentrations and risk of severe COVID-19 infection and mortality. Recommendations for vitamin D supplementation to lessen COVID-19 risks may provide false reassurance.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20127563

RESUMEN

BACKGROUNDIt is now well recognised that the risk of severe COVID-19 increases with some long-term conditions (LTCs). However, prior research primarily focuses on individual LTCs and there is a lack of data on the influence of multimorbidity ([≥]2 LTCs) on the risk of COVID-19. Given the high prevalence of multimorbidity, more detailed understanding of the associations with multimorbidity and COVID-19 would improve risk stratification and help protect those most vulnerable to severe COVID-19. Here we examine the relationships between multimorbidity, polypharmacy (a proxy of multimorbidity), and COVID-19; and how these differ by sociodemographic, lifestyle, and physiological prognostic factors. METHODS AND FINDINGSWe studied data from UK Biobank (428,199 participants; aged 37-73; recruited 2006-2010) on self-reported LTCs, medications, sociodemographic, lifestyle, and physiological measures which were linked to COVID-19 test data. Poisson regression models examined risk of COVID-19 by multimorbidity/polypharmacy and effect modification by COVID-19 prognostic factors (age/sex/ethnicity/socioeconomic status/smoking/physical activity/BMI/systolic blood pressure/renal function). 4,498 (1.05%) participants were tested; 1,324 (0.31%) tested positive for COVID-19. Compared with no LTCs, relative risk (RR) of COVID-19 in those with 1 LTC was no higher (RR 1.12 (CI 0.96-1.30)), whereas those with [≥]2 LTCs had 48% higher risk; RR 1.48 (1.28-1.71). Compared with no cardiometabolic LTCs, having 1 and [≥]2 cardiometabolic LTCs had a higher risk of COVID-19; RR 1.28 (1.12-1.46) and 1.77 (1.46-2.15), respectively. Polypharmacy was associated with a dose response increased risk of COVID-19. All prognostic factors were associated with a higher risk of COVID-19 infection in multimorbidity; being non-white, most socioeconomically deprived, BMI [≥]40 kg/m2, and reduced renal function were associated with the highest risk of COVID-19 infection: RR 2.81 (2.09-3.78); 2.79 (2.00-3.90); 2.66 (1.88-3.76); 2.13 (1.46-3.12), respectively. No multiplicative interaction between multimorbidity and prognostic factors was identified. Important limitations include the low proportion of UK Biobank participants with COVID-19 test data (1.05%) and UK Biobank participants being more affluent, healthier and less ethnically diverse than the general population. CONCLUSIONSIncreasing multimorbidity, especially cardiometabolic multimorbidity, and polypharmacy are associated with a higher risk of developing COVID-19. Those with multimorbidity and additional factors, such as non-white ethnicity, are at heightened risk of COVID-19. Author summaryO_ST_ABSWhy was this study done?C_ST_ABSO_LIMultimorbidity is a growing global challenge, but thus far LTC prognostic factors for severe COVID-19 primarily involve single conditions and there is a lack of data on the influence of multimorbidity on the risk of COVID-19. C_LIO_LIAs countries move from the lockdown phase of COVID-19, clinicians need more information about risk stratification to appropriately advise patients with multimorbidity about risk prevention steps. C_LI What did the researchers do and find?O_LIParticipants with multimorbidity ([≥]2 LTCs) had a 48% higher risk of a positive COVID-19 test, those with cardiometabolic multimorbidity had a 77% higher risk, than those without that type of multimorbidity. C_LIO_LIThose from non-white ethnicities with multimorbidity had nearly three times the risk of having COVID-19 infection compared to those of white ethnicity C_LIO_LIPeople with multimorbidity with the highest risk of COVID-19 infection were the most socioeconomically deprived, those with BMI [≥]40 kg/m2, and those with reduced renal function. C_LI What do these findings mean?O_LIIndividuals with [≥]2 LTCs, especially if these are cardiometabolic in nature, should be particularly stringent in adhering to preventive measures, such as physical distancing and hand hygiene. C_LIO_LIOur findings have implications for clinicians, occupational health and employers when considering work-place environments, appropriate advice for patients, and adaptations that might be required to protect such staff, identified here, as higher risk. C_LI

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20122226

RESUMEN

We examined the link between BMI and risk of a positive test for SARS-CoV-2 and risk of COVID-19-related death among UK Biobank participants. Among 4855 participants tested for SARS-CoV-2 in hospital, 839 were positive and of these 189 died from COVID-19. Poisson models with penalised thin plate splines were run relating exposures of interest to test positivity and case-fatality, adjusting for confounding factors. BMI was associated strongly with positive test, and risk of death related to COVID-19. The gradient of risk in relation to BMI was steeper in those under 70, compared with those aged 70 years or older for COVID-19 related death (Pinteraction=0.03). BMI was more strongly related to test positivity (Pinteraction=0.010) and death (Pinteraction=0.002) in non-whites, compared with whites. These data add support for adiposity being more strongly linked to COVID-19-related deaths in younger people and non-white ethnicities. If future studies confirm causality, lifestyle interventions to improve adiposity status may be important to reduce the risk of COVID-19 in all, but perhaps particularly, non-white communities.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20083295

RESUMEN

BackgroundInformation on risk factors for COVID-19 is sub-optimal. We investigated demographic, lifestyle, socioeconomic, and clinical risk factors, and compared them to risk factors for pneumonia and influenza in UK Biobank. MethodsUK Biobank recruited 37-70 year olds in 2006-2010 from the general population. The outcome of confirmed COVID-19 infection (positive SARS-CoV-2 test) was linked to baseline UK Biobank data. Incident influenza and pneumonia were obtained from primary care data. Poisson regression was used to study the association of exposure variables with outcomes. FindingsAmong 428,225 participants, 340 had confirmed COVID-19. After multivariable adjustment, modifiable risk factors were higher body mass index (RR 1.24 per SD increase), smoking (RR 1.38), slow walking pace as a proxy for physical fitness (RR 1.66) and use of blood pressure medications as a proxy for hypertension (RR 1.40). Non-modifiable risk factors included older age (RR 1.10 per 5 years), male sex (RR 1.64), black ethnicity (RR 1.86), socioeconomic deprivation (RR 1.26 per SD increase in Townsend Index), longstanding illness (RR 1.38) and high cystatin C (RR 1.24 per 1 SD increase). The risk factors overlapped with pneumonia somewhat; less so for influenza. The associations with modifiable risk factors were generally stronger for COVID-19, than pneumonia or influenza. InterpretationThese findings suggest that modification of lifestyle may help to reduce the risk of COVID-19 and could be a useful adjunct to other interventions, such as social distancing and shielding of high risk. FundingBritish Heart Foundation, Medical Research Council, Chief Scientist Office.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20075663

RESUMEN

BackgroundUnderstanding of the role of ethnicity and socioeconomic position in the risk of developing SARS-CoV-2 infection is limited. We investigated this in the UK Biobank study. MethodsThe UK Biobank study recruited 40-70 year olds in 2006-2010 from the general population, collecting information about self-defined ethnicity and socioeconomic variables (including area-level socioeconomic deprivation and educational attainment). SARS-CoV-2 test results from Public Health England were linked to baseline UK Biobank data. Poisson regression with robust standard errors was used to assess risk ratios (RRs) between the exposures and dichotomous variables for: being tested, having a positive test and testing positive in hospital. We also investigated whether ethnicity and socioeconomic position were associated with having a positive test amongst those tested. We adjusted for covariates including age, sex, social variables (including healthcare work and household size), behavioural risk factors and baseline health. ResultsAmong 428,225 participants in England, 1,474 had been tested and 669 tested positive between 16 March and 13 April 2020. Black, south Asian and white Irish people were more likely to have confirmed infection (RR 4.01 (95%CI 2.92-5.12); RR 2.11 (95%CI 1.43-3.10); and RR 1.60 (95% CI 1.08-2.38) respectively) and were more likely to be hospital cases compared to the White British. While they were more likely to be tested, they were also more likely to test positive. Adjustment for baseline health and behavioural risk factors led to little change, with only modest attenuation when accounting for socioeconomic variables. Socioeconomic deprivation and having no qualifications were consistently associated with a higher risk of confirmed infection (RR 2.26 (95%CI 1.76-2.90); and RR 1.91 (95%CI 1.53-2.38) respectively). ConclusionsSome minority ethnic groups have a higher risk of confirmed SARS-CoV-2 infection in the UK Biobank study which was not accounted for by differences in socioeconomic conditions, measured baseline health or behavioural risk factors. An urgent response to addressing these elevated risks is required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...