Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037456

RESUMEN

For over a century, fingerprints have served as a pivotal tool for identification of individuals owing to their enduring characteristics and easily apparent features, particularly in the realm of criminal investigations. Latent fingerprints (LFPs) are "invisible fingerprints" that are most commonly available at crime scenes and require a rapid, selective, sensitive, and convenient method for detection. However, existing fingerprint development techniques harbour limitations, prompting the exploration of novel approaches that prioritize investigator safety and environmental sustainability. Leveraging the unique photophysical properties of aggregation-induced emission luminogens (AIEgens) has emerged as a promising strategy for on-site analysis of LFP visualization. In this highlight, we have presented a comparative analysis of various AIEgens (organic compounds, metal complexes, nanoparticles, and polymers) for the development and detection of LFPs. Through this examination, insights into the efficiency and potential applications of AIE-based fingerprint development techniques are provided. In addition, several strategies have been proposed for circumventing the limitations of existing AIEgens. We hope that this highlight article will encourage more researchers to investigate AIEgens in LFP detection, contributing to forensic science.

4.
J Forensic Leg Med ; 88: 102351, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35427851

RESUMEN

INTRODUCTION: Forensic DNA Phenotyping (FDP) has provided better understanding of various phenotypic features (e.g., height, skin colour, eye colour, structure and shape of scalp hair, baldness, facial features etc.) and associated genetic variations. The current study was designed to investigate the genetic variants and their potential contribution towards accurate phenotype prediction systems. Short Tandem Repeat (STR) based DNA typing method can be uninformative or with little potential to solve a crime in absence of suspect DNA profile in the database. Forensic DNA Phenotyping (FDP), prediction of externally visible characteristics (EVCs) from the crime scene DNA would certainly provide a new dimension to personal identification. The aim of this review paper is to highlight the significance and future prospects of FDP. RESULTS: A comprehensive literature review was conducted using PubMed and similar e-databases with keywords from two main components-phenotype and the associated genetic variants. To ensure a thorough literature review, searches were extended using the snowballing technique from reference lists. Key data extracted were type of study, sample characteristics (sample size, age, geographical location and ancestry), details of SNPs studied and prediction accuracies. CONCLUSION: Phenotyping tools based on genotyping and statistical analysis for the prediction of human pigmentation are propitious in solving cold cases. This indicates the inevitability of future studies for the identification of new genetic markers for accurate prediction of phenotype or EVCs via genome-wide association study (GWAS) in diverse global populations.


Asunto(s)
Genética Forense , Estudio de Asociación del Genoma Completo , Crimen , ADN/análisis , Genética Forense/métodos , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Med Sci Law ; 58(3): 137-146, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29683043

RESUMEN

Background and aims Hair analysis for drug detection is one of the widely accepted imperative techniques in the field of forensic toxicology. The current study was designed to investigate the efficacy of chromatography for detection of drugs of abuse in hair. Method A comprehensive review of articles from last two decades on hair analyses via PubMed and similar resources was performed. Issues concerning collection, decontamination and analytical techniques are summarised. Physiochemical nature of hair, mechanism of drug incorporation and its stability in hair are briefly discussed. Furthermore, various factors affecting results and interpretation are elucidated. Result A hair sample is chosen over traditional biological samples such blood, urine, saliva or tissues due to its inimitable ability to provide a longer time frame for drug detection. Its collection is almost non-invasive, less cumbersome and does not involve any specialised training/expertise. Recent advances in analytical technology have resulted in better sensitivity, reproducibility and accuracy, thus providing a new arena of scientific understanding and test interpretation. Conclusion Though recent studies have yielded many insights into drug binding and drug incorporation in hair, the major challenge in hair analysis lies in the interpretation of results, which may be affected by external contamination and thus lead to false-positives. Therefore, there is a need for more sensitive and selective analysis methods to be developed in order to minimise factors that induce the effect of melanin, age and so on, and this would certainly provide a new dimension to hair analysis and its applications.


Asunto(s)
Toxicología Forense/métodos , Cabello/química , Detección de Abuso de Sustancias/métodos , Cabello/anatomía & histología , Humanos , Farmacocinética , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...