Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 151(19): 191102, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757128

RESUMEN

The addition of zinc complexes to the syntheses of indium phosphide nanocrystals (InP NCs) has become commonplace, due to their ability to alter and significantly improve observed optical properties. In this paper, the role of zinc complexes on the synthesis and observed properties of InP is carefully examined. Produced InP and InP:Zn2+ NCs are thoroughly characterized from both structural (core and surface) and optical perspectives over a wide range of Zn2+ compositions (0%-43% atomic content). We find no differences in the physical (NC size and polydispersity) and structural properties (crystallographic phase) of InP and InP:Zn2+ NCs. Optically, significant changes are observed when zinc is added to InP syntheses, including blueshifted absorption edges and maxima, increased quantum yields, and the near elimination of surface state emission. These improved optical properties result from surface passivation by zinc carboxylate moieties. Changes to the optical properties begin at zinc concentrations as low as 5%, demonstrating the high sensitivity of InP optical properties to exogenous species.

2.
RSC Adv ; 8(56): 32146-32156, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35547528

RESUMEN

This work provides a detailed study on the synthesis and characterization of silica coated iron nanoparticles (NPs) by coupling Transmission Electronic Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and magnetic measurements. Remarkably, iron NPs (of 9 nm of mean diameter) have been embedded in silica without any alteration of the magnetization of the iron cores, thanks to an original protocol of silica coating in non alcoholic medium. Tuning the synthesis parameters (concentration of reactants and choice of solvent), different sizes of Fe@SiO2 composites can be obtained with different thicknesses of silica. The magnetization of these objects is fully preserved after 24 h of water exposure thanks to a thick (14 nm) silica layer, opening thus new perspectives for biomedical applications. Hyperthermia measurements have been compared between Fe and Fe@SiO2 NPs, evidencing the self-organization of the free Fe NPs when a large amplitude magnetic field is applied. This phenomenon induces an increase of heating power which is precluded when the Fe cores are immobilised in silica. High-frequency hysteresis loop measurements allowed us to observe for the first time the increase of the ferrofluid susceptibility and remanence which are the signature of the formation of Fe NPs chains.

3.
Phys Chem Chem Phys ; 17(43): 28719-28, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26447146

RESUMEN

This work provides a detailed study on the physico-chemical characterization of a mechanized silver-gold alloy@mesoporous silica shell/pseudorotaxane nano-assembly using two main complementary techniques: XPS and NMR (liquid- and solid-state). The pseudorotaxane nanovalve is composed of a stalk (N-(6-aminohexyl)-aminomethyltriethoxysilane)/macrocycle (cucurbit[6]uril (CB6)) complex anchored to the silica shell leading to a silica/nanovalve hybrid organic-inorganic interface that has been fully characterized. The stalk introduction in the silica network was clearly demonstrated by XPS measurements, with the Si 2p peak shifting to lower energy after grafting, and through the analysis of the C 1s and N 1s core peaks, which indicated the presence of CB6 on the nanoparticle surface. For the first time, the complex formation on nanoparticles was proved by high speed (1)H MAS NMR experiments. However, these solid state NMR analyses have shown that the majority of the stalk does not interact with the CB6 macrocycle when formulated in powder after removing the solvent. This can be related to the large number of possible organizations and interactions between the stalk, the CB6 and the silica surface. These results highlight the importance of using a combination of adapted and complementary highly sensitive surface and volume characterization techniques to design tailor-made hybrid hierarchical structured nano-assemblies with controlled and efficient properties for potential biological purposes.


Asunto(s)
Oro/química , Nanocáscaras/química , Dióxido de Silicio/química , Plata/química , Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Espectroscopía de Resonancia Magnética , Nanocáscaras/ultraestructura , Espectroscopía de Fotoelectrones , Propiedades de Superficie
4.
Dalton Trans ; 44(16): 7242-50, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25790067

RESUMEN

The synthesis of germanium nanoparticles has been carried out, thanks to the design of novel aminoiminate germanium(II) precursors: (ATI)GeZ (with Z = OMe, NPh2, and ATI = N,N'-diisopropyl-aminotroponiminate) and (Am)2Ge (Am = N,N'-bis(trimethylsilyl)phenyl amidinate). These complexes were fully characterized by spectroscopic techniques as well as single crystal X-ray diffraction. The thermolysis of both complexes yielded NPs which display similar features that are a Ge/GeO2 core/shell structure with a mean diameter close to 5 nm with a narrow size distribution (<15%). Whereas the high temperatures (>300 °C) classically reported in the literature for the preparation of germanium-based NPs were necessary for thermolysis of the complexes (ATI)GeZ, the use of amidinate-based precursors allows the preparation at an unprecedented low temperature (160 °C) for the thermolytic route. As suggested by a mechanistic study, the lower reactivity of (ATI)GeZ (for which the concomitant use of high temperature and acidic reagent is required) was explained in terms of lower ring strain compared to the case of (Am)2Ge.

5.
Chemistry ; 6(22): 4082-90, 2000 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-11151840

RESUMEN

Nanocomposite core-shell particles that consist of a Sn0 core surrounded by a thin layer of tin oxides have been prepared by thermolysis of [(Sn(NMe2)2)2] in anisole that contains small, controlled amounts of water. The particles were characterized by means of electronic microscopies (TEM, HRTEM, SEM), X-ray diffraction (XRD) studies, photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. The TEM micrographs show spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of temperature, time, water concentration, and tin precursor concentration. Nanoparticles of 19 nm median size and displaying a narrow size distribution have been obtained with excellent yield in the optimized conditions. HRTEM, XPS, XRD and Mossbauer studies indicate the composite nature of the particles that consist of a well-crystallized tin beta core of approximately equals 11 nm covered with a layer of approximately equals 4 nm of amorphous tin dioxide and which also contain quadratic tin monoxide crystallites. The thermal oxidation of this nanocomposite yields well-crystallized nanoparticles of SnO2* without coalescence or size change. XRD patterns show that the powder consists of a mixture of two phases: the tetragonal cassiterite phase, which is the most abundant, and an orthorhombic phase. In agreement with the small SnO2 particle size, the relative intensity of the adsorbed dioxygen peak observed on the XPS spectrum is remarkable, when compared with that observed in the case of larger SnO2 particles. This is consistent with electrical conductivity measurements, which demonstrate that this material is highly sensitive to the presence of a reducing gas such as carbon monoxide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...