Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274826

RESUMEN

Hydrogen sulfide is present in active or extinct volcanic areas (mofettas). The habitable premises in these areas are affected by the presence of hydrogen sulfide, which, even in low concentrations, gives off a bad to unbearable smell. If the living spaces considered are closed enclosures, then a system can be designed to reduce the concentration of hydrogen sulfide. This paper presents a membrane-based way to reduce the hydrogen sulfide concentration to acceptable limits using a cellulosic derivative-propylene hollow fiber-based composite membrane module. The cellulosic derivatives considered were: carboxymethyl-cellulose (NaCMC), P1; cellulose acetate (CA), P2; methyl 2-hydroxyethyl-cellulose (MHEC), P3; and hydroxyethyl-cellulose (HEC), P4. In the permeation module, hydrogen sulfide is captured with a solution of cadmium that forms cadmium sulfide, usable as a luminescent substance. The composite membranes were characterized by SEM, EDAX, FTIR, FTIR 2D maps, thermal analysis (TG and DSC), and from the perspective of hydrogen sulfide air removal performance. To determine the process performances, the variables were as follows: the nature of the cellulosic derivative-polypropylene hollow fiber composite membrane, the concentration of hydrogen sulfide in the polluted air, the flow rate of polluted air, and the pH of the cadmium nitrate solution. The pertraction efficiency was highest for the sodium carboxymethyl-cellulose (NaCMC)-polypropylene hollow fiber membrane, with a hydrogen sulfide concentration in the polluted air of 20 ppm, a polluted air flow rate (QH2S) of 50 L/min, and a pH of 2 and 4. The hydrogen sulfide flux rates, for membrane P1, fall between 0.25 × 10-7 mol·m2·s-1 for the values of QH2S = 150 L/min, CH2S = 20 ppm, and pH = 2 and 0.67 × 10-7 mol·m-2·s-1 for the values of QH2S = 50 L/min, CH2S = 60 ppm, and pH = 2. The paper proposes a simple air purification system containing hydrogen sulfide, using a module with composite cellulosic derivative-polypropylene hollow fiber membranes.

2.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675662

RESUMEN

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

3.
Toxics ; 12(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393198

RESUMEN

The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes. Simultaneous recovery is achieved by applying a hybrid membrane electrolysis technology coupled with nanofiltration. An electrolysis cell with sulphonated polyether-ether-ketone membranes (sPEEK) and a nanofiltration module with chitosan-polypropylene membranes (C-PHF-M) are used to carry out the hybrid process. The analysis of welding electrodes led to a composition of W (tungsten) 89.4%; Th 7.1%; O2 2.5%; and Al 1.1%. Thus, the parameters of the electrolysis process were chosen according to the speciation of the three metals suggested by the superimposed Pourbaix diagrams. At a constant potential of 20.0 V and an electrolysis current of 1.0 A, the pH is varied and the possible composition of the solution in the anodic workspace is analyzed. Favorable conditions for both electrolysis and nanofiltration were obtained at pH from 6 to 9, when the soluble tungstate ion, the aluminum hydroxide, and solid thorium dioxide were formed. Through the first nanofiltration, the tungstate ion is obtained in the permeate, and thorium dioxide and aluminum hydroxide in the concentrate. By adding a pH 13 solution over the two precipitates, the aluminum is solubilized as sodium aluminate, which will be found after the second nanofiltration in the permeate, with the thorium dioxide remaining integrally (within an error of ±0.1 ppm) on the C-PHF-M membrane.

4.
Membranes (Basel) ; 13(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37755188

RESUMEN

Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium.

5.
Membranes (Basel) ; 13(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36984671

RESUMEN

Melatonin is the hormone that focuses the attention of the researchers in the medical, pharmaceutical, materials, and membranes fields due to its multiple biomedical implications. The variety of techniques and methods for the controlled release of melatonin is linked to the multitude of applications, among which sports medicine occupies a special place. This paper presents the preparation and characterization of composite membranes based on chitosan (Chi) and sulfonated ethylene-propylene-diene terpolymer (sEPDM). The membranes were obtained by controlled vacuum evaporation from an 8% sEPDM solution in toluene (w/w), in which chitosan was dispersed in an ultrasonic field (sEPDM:Chi = 1:1, w/w). For the comparative evaluation of the membranes' performances, a melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel:Chi:sEPDM = 0.5:0.5:1.0, w/w/w) test membrane was made. The prepared membranes were morphologically and structurally characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatography and infrared analysis, and contact angle measurements, but also from the point of view of performance in the process of transport and release of melatonin in dedicated environments (aqueous solutions with controlled pH and salinity). The prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day (sEPDM), 1.6 mg/ cm2·per day (Chi/sEPDM), and 1.25 mg/cm2·per day (Mel/Chi/SEPDM).

6.
Membranes (Basel) ; 13(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36984736

RESUMEN

This paper presents the preparation and characterization of composite membranes based on chitosan (Chi), sulfonated ethylene-propylene-diene terpolymer (sEPDM), and polypropylene (PPy), and designed to capture hydrogen sulfide. The Chi/sEPDM/PPy composite membranes were prepared through controlled evaporation of a toluene dispersion layer of Chi:sEPDM 1;1, w/w, deposited by immersion and under a slight vacuum (100 mmHg) on a PPy hollow fiber support. The composite membranes were characterized morphologically, structurally, and thermally, but also from the point of view of their performance in the process of hydrogen sulfide sequestration in an acidic media solution with metallic ion content (Cu2+, Cd2+, Pb2+, and/or Zn2+). The operational parameters of the pertraction were the pH, pM, matrix gas flow rate, and composition. The results of pertraction from synthetic gases mixture (nitrogen, methane, carbon dioxide) indicated an efficient removal of hydrogen sulfide through the prepared composite membranes, as well as its immobilization as sulfides. The sequestration and the recuperative separation, as sulfides from an acid medium, of the hydrogen sulfide reached up to 96%, decreasing in the order: CuS > PbS > CdS > ZnS.

7.
Membranes (Basel) ; 12(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135852

RESUMEN

The development of new composite membranes is required to separate chemical species from aggressive environments without using corrective reagents. One such case is represented by the high hydrochloric acid mixture (very low pH and pCl) that contains mixed metal ions, or that of copper, cadmium, zinc and lead ions in a binary mixture (Cu-Zn and Cd-Pb) or quaternary mixture. This paper presents the obtaining of a composite membrane chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF) and its use in the separation of binary or quaternary mixtures of copper, cadmium, zinc, and lead ions by nanofiltration and pertraction. The obtained membranes were morphologically and structurally characterized using scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermogravimetric analysis, and differential scanning calorimetry (TGA-DSC), but also used in preliminary separation tests. Using the ion solutions in hydrochloric acid 3 mol/L, the separation of copper and zinc or cadmium and lead ions from binary mixtures was performed. The pertraction results were superior to those obtained by nanofiltration, both in terms of extraction efficiency and because at pertraction, the separate cation was simultaneously concentrated by an order of magnitude. The mixture of the four cations was separated by nanofiltration (at 5 bars, using a membrane of a 1 m2 active area) by varying two operational parameters: pH and pCl. Cation retention could reach 95% when adequate values of operational parameters were selected. The paper makes some recommendations for the use of composite membranes, chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF), so as to obtain the maximum possible retention of the target cation.

8.
Membranes (Basel) ; 12(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35877893

RESUMEN

This study presents the preparation of hybrid nanofiltration membranes based on poly(1,4-phenylene ether ether sulfone), polyacrylonitrile, poly(vinyl pyrrolidone), and SBA-15 mesoporous silica. Laser treatment of polymeric solutions to enhance the hydrophilicity and performance of membranes was investigated. The membranes' structure was characterized using scanning electron (SEM) and atomic force (AFM) microscopy and contact angle measurements. The addition of PAN in the casting solution produced significant changes in the membrane structure, from finger-like porous structures to sponge-like porous structures. Increased PAN concentration in the membrane composition enhanced the hydrophilicity of the membrane surface, which also accounted for the improvement in the antifouling capabilities. The permeation of apple pomace extract and the content of polyphenols and flavonoids were used to evaluate the efficacy of the hybrid membranes created. The results showed that the hybrid nanofiltration membranes based on PPEES/PAN/PVP/SBA-15: 15/5/1/1 and 17/3/1/1 exposed to laser for 5 min present a higher rejection coefficient to total polyphenols (78.6 ± 0.7% and 97.8 ± 0.9%, respectively) and flavonoids (28.7 ± 0.2% and 50.3 ± 0.4%, respectively) and are substantially better than a commercial membrane with MWCO 1000 Da or PPEES-PVP-based membrane.

9.
Membranes (Basel) ; 12(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35736264

RESUMEN

The bio-medical benefits of silver ions and 10-undecenoic acid in various chemical-pharmaceutical preparations are indisputable, thus justifying numerous research studies on delayed and/or controlled release. This paper presents the effect of the polymer matrix in the simultaneous release of silver ions and 10-undecenoic acid in an aqueous medium of controlled pH and ionic strength. The study took into consideration polymeric matrices consisting of cellulose acetate (CA) and polysulfone (PSf), which were impregnated with oxide nanoparticles containing silver and 10-undecenoic acid. The studied oxide nanoparticles are nanoparticles of iron and silver oxides obtained by an accessible electrochemical method. The obtained results show that silver can be released, simultaneously with 10-undecenoic acid, from an impregnated polymeric membrane, at concentrations that ensure the biocidal and fungicidal capacity. Concentrations of active substances can be controlled by choosing the polymer matrix or, in some cases, by changing the pH of the target medium. In the studied case, higher concentrations of silver ions are released from the polysulfone matrix, while higher concentrations of 10-undecenoic acid are released from the cellulose acetate matrix. The results of the study show that a correlation can be established between the two released target substances, which is dependent on the solubility of the organic compound in the aqueous medium and the interaction of this compound with the silver ions. The ability of 10-undecenoic acid to interact with the silver ion, both through the carboxyl and alkene groups, contributes to the increase in the content of the silver ions transported in the aqueous medium.

10.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335777

RESUMEN

Membranes are selective and highly productive nanostructures dedicated to developing separation, concentration, and purification processes with uses in the most diverse economic and social fields: industry, agriculture, transport, environment, health, and space exploration [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA