Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 316: 115282, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576710

RESUMEN

Restoring drained peatlands has been practiced to mitigate climate change, regulate water quality, and restore biodiversity. However, no information is available on the long-term impact of drainage and restoration of peatlands on total sulfur (St), fractions, and S species. We investigated the long-term drained and restored forested and coastal peatlands and percolation mires using the sequential S fractionation and S K-edge X-ray near-edge absorption structure (XANES) spectroscopy analysis to address this knowledge gap. The St concentrations in the drained forested peatland and percolation mire were low by 4 and 1.5 folds compared to their respective restored peatlands at the topsoil horizons. Similarly, the H2O-S and NaH2PO4-S fractions in the drained forested peatland (28 and 18 mg kg-1) were lower than in the restored forested peatland (165 and 166 mg kg-1). However, the S fractions were higher in the drained percolation mire (449 and 247 mg kg-1) than in the restored percolation mire (150 and 41 mg kg-1). The relative proportion of the residual-S fraction (70-97% of St) was equivalent to the relative proportion of organic S species (76-97% of St) derived from the XANES analysis. The XANES analysis revealed the reduced organic S (44-62%), organic S with intermediate oxidation states (16-47%), strongly reduced (0-21%) and oxidized inorganic S species (4-12%) of the St. The results indicate that long-term restoration conserved St, decreased labile S fractions and enriched the strongly reduced inorganic and organic S species.


Asunto(s)
Suelo , Humedales , Biodiversidad , Alemania , Suelo/química , Azufre
2.
J Environ Qual ; 50(6): 1364-1380, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34403153

RESUMEN

About 91,300 ha of peatlands has been rewetted in western Europe since the mid-1990s. Still, it is unknown how long-term rewetting alters the dissolved organic matter (DOM) concentration, molecular composition, and functional groups. We examined these DOM characteristics in three peatland types subjected to 47- to 231-yr drainage and 18- to 24-yr rewetting to address this knowledge gap. Cold water-extractable DOM was characterized by pyrolysis field ionization mass spectrometry (Py-FIMS) and X-ray absorption near-edge structure (XANES) spectroscopy. The dissolved organic carbon (DOC) concentration in the rewetted forest peatland was 2.7 times higher than in the drained forest peatland. However, rewetting decreased the DOC concentrations by 1.5 and 4 times in the coastal peatland and percolation mire, respectively, compared with their respective drained peatlands at the topsoil horizons. The Py-FIMS analysis revealed that all nine DOM compound classes' relative abundances differed between the rewetted and drained forest peatland with the lower relative abundances of the labile DOM compound classes in the rewetted forest peatlands. However, most DOM compound classes' relative abundances were similar between the rewetted and drained coastal peatlands and percolation mires. The XANES also revealed nine carbon and seven nitrogen functional groups with no apparent differences between the two contrasting management practices. The influence of drainage and rewetting on DOC concentration and molecular composition depends on peatland type, drainage period, rewetting intensity, and peat degradation status that should be considered in future research for understanding DOM transformation and transportation from degraded and restored peatland ecosystems.


Asunto(s)
Materia Orgánica Disuelta , Humedales , Carbono , Ecosistema , Suelo
3.
Microorganisms ; 8(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290343

RESUMEN

Drained peatlands are significant sources of the greenhouse gas (GHG) carbon dioxide. Rewetting is a proven strategy used to protect carbon stocks; however, it can lead to increased emissions of the potent GHG methane. The response to rewetting of soil microbiomes as drivers of these processes is poorly understood, as are the biotic and abiotic factors that control community composition. We analyzed the pro- and eukaryotic microbiomes of three contrasting pairs of minerotrophic fens subject to decade-long drainage and subsequent long-term rewetting. Abiotic soil properties including moisture, dissolved organic matter, methane fluxes, and ecosystem respiration rates were also determined. The composition of the microbiomes was fen-type-specific, but all rewetted sites showed higher abundances of anaerobic taxa compared to drained sites. Based on multi-variate statistics and network analyses, we identified soil moisture as a major driver of community composition. Furthermore, salinity drove the separation between coastal and freshwater fen communities. Methanogens were more than 10-fold more abundant in rewetted than in drained sites, while their abundance was lowest in the coastal fen, likely due to competition with sulfate reducers. The microbiome compositions were reflected in methane fluxes from the sites. Our results shed light on the factors that structure fen microbiomes via environmental filtering.

4.
Sci Rep ; 5: 16261, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541265

RESUMEN

Soil contains almost twice as much carbon (C) as the atmosphere and 5-15% of soil C is stored in a form of particulate organic matter (POM). Particulate organic matter C is regarded as one of the most labile components of the soil C, such that can be easily lost under right environmental settings. Conceptually, micro-environmental conditions are understood to be responsible for protection of soil C. However, quantitative knowledge of the specific mechanisms driving micro-environmental effects is still lacking. Here we combined CO2 respiration measurements of intact soil samples with X-ray computed micro-tomography imaging and investigated how micro-environmental conditions, represented by soil pores, influence decomposition of POM. We found that atmosphere-connected soil pores influenced soil C's, and especially POM's, decomposition. In presence of such pores losses in POM were 3-15 times higher than in their absence. Moreover, we demonstrated the presence of a feed-forward relationship between soil C decomposition and pore connections that enhance it. Since soil hydrology and soil pores are likely to be affected by future climate changes, our findings indicate that not-accounting for the influence of soil pores can add another sizable source of uncertainty to estimates of future soil C losses.

5.
PLoS One ; 10(4): e0123999, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909444

RESUMEN

Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Plantas , Microbiología del Suelo , Suelo/química , Carbono/química , Hojas de la Planta , Plantas/química
6.
Environ Sci Technol ; 44(6): 2092-7, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20146464

RESUMEN

Little is known about P species in agro-industrial byproducts from developing countries, which may be either pollutants or valuable soil amendments. The present study speciated P in dry (COD) and wet (COW) coffee, sisal (SIS), barley malt (BEB) and sugar cane processing (FIC) byproducts, and filter cakes of linseed (LIC) and niger seed (NIC)with sequential fractionation, solution (31)P nuclear magnetic resonance (NMR) spectroscopy, and P K- and L(2,3)-edge X-ray absorption near-edge structure (XANES) spectroscopy. The sequential P fractionation recovered 59% to almost 100% of total P (P(t)), and more than 50% of P(t) was extracted by H(2)O and NaHCO(3) in five out of seven samples. Similarly, the NaOH + EDTA extraction for solution (31)P NMR recovered 48-94% of P(t). The (31)P NMR spectra revealed orthophosphate (6-81%), pyrophosphate (0-10%), and orthophosphate monoesters (6-94%). Orthophosphate predominated in COD, COW, SIS, and FIC, whereas BEB, UC, and NIC were rich in orthophosphate monoesters. The concentrations of P(i), and P(o) determined in the sequential and NaOH + EDTA extractions and (31)P NMR spectra were strongly and positively correlated (r = 0.88-1.00). Furthermore, the P K- and L(2,3)-edge XANES confirmed the H(2)SO(4)--P(i) detected in the sequential fractionation by unequivocal identification of Ca--P phases in a few samples. The results indicate that the combined use of all four analytical methods is crucial for comprehensive P speciation in environmental samples and the application of these byproducts to soil.


Asunto(s)
Agricultura , Monitoreo del Ambiente/métodos , Residuos Industriales/análisis , Fósforo/química , Contaminantes del Suelo/química , Fraccionamiento Químico , Países en Desarrollo , Etiopía , Espectroscopía de Resonancia Magnética , Espectroscopía de Absorción de Rayos X
7.
J Environ Qual ; 39(6): 2179-84, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21284316

RESUMEN

The phosphorus (P) in agro-industrial by-products--a potential source of freshwater eutrophication but also a valuable fertilizer--needs to be speciated to evaluate its fate in the environment. We investigated to what extent X-ray absorption near edge structure (XANES) spectroscopy at the P K- and L2.3-edges reflected differences in sequentially extracted filter cakes from sugarcane (Saccharum officinarum L.) (FIC) and niger seed (Guizotia abyssinica Cass.; NIC) processing industry in Ethiopia. The P fractionation removed more labile (54%) and H2SO4-P (28%) from FIC than from NIC (18% labile, 12% H2SO4-P). For the FIC residues after each extraction step, linear combination (LC) fitting of P K-edge spectra provided evidence for the enrichment of Ca-P after the NaOH-extraction and its almost complete removal after the H2SO4-treatment. The LC-fitting was unsuccessful for the NIC samples, likely because of the predominance of organic P compounds. The different proportions of Ca-P compounds between FIC (large) and NIC (small) were more distinctive in L2-than in the K-edge XANES spectra. In conclusion, the added value of complementary P K- and L2.3-edge XANES was clearly demonstrated, and the P fractionation and speciation results together justify using FIC and NIC as soil amendments in the tropics.


Asunto(s)
Absorciometría de Fotón , Residuos Industriales , Fósforo/química , Análisis Espectral/métodos , Agricultura , Fraccionamiento Químico , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...