Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2740, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792714

RESUMEN

Hybrid layers consisting of Fe oxide, Fe hydroxide, and nitrogen doped graphene-like platelets have been synthesized by an eco-friendly laser-based method for photocatalytic applications. The complex composite layers show high photodecomposition efficiency towards degradation of antibiotic molecules under visible light irradiation. The photodecomposition efficiency was investigated as a function of relative concentrations of base materials, Fe oxide nanoparticles and graphene oxide platelets used for the preparation of target dispersions submitted to laser irradiation. Although reference pure Fe oxide/Fe hydroxide layers have high absorption in the visible spectral region, their photodecomposition efficiency is negligible under the same irradiation conditions. The high photocatalytic decomposition efficiency of the nanohybrid layer, up to 80% of the initial antibiotic molecules was assigned to synergistic effects between the constituent materials, efficient separation of the electron-hole pairs generated by visible light irradiation on the surface of Fe oxide and Fe hydroxide nanoparticles, in the presence of conducting graphene-like platelets. Nitrogen doped graphene-like platelets contribute also to the generation of electron-hole pairs under visible light irradiation, as demonstrated by the photocatalytic activity of pure, reference nitrogen doped graphene-like layers. The results also showed that adsorption processes do not contribute significantly to the removal of antibiotic molecules from the test solutions. The decrease of the antibiotic concentration under visible light irradiation was assigned primarily to photocatalytic decomposition mechanisms.

2.
Phys Chem Chem Phys ; 23(30): 16107-16127, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34296237

RESUMEN

Zn-Fe-O nanoparticle systems (Z3F, Z20F and Z60F) were produced by changing the Zn:Fe ratio (0.97 : 0.03, 0.8 : 0.2 and 0.4 : 0.6 in at%, respectively) in Zn(ii)-Fe(iii)-carboxylate precursors. According to X-ray diffraction, Z60F is nearly single-phase ZnFe2O4 (5.9 nm crystallite size), Z20F is a ZnO/ZnFe2O4 nanocomposite consisting of 48.8% ZnFe2O4 (4.7 nm crystallite size), and Z3F is apparently pure ZnO (9.5 nm). We found evidence for a ZnFe2O4 spinel of high inversion degree (80-100%) and with superparamagnetic (SPM) behaviour at room temperature in all three samples by a remarkable correlation between HRTEM, FTIR, XPS, Mössbauer and magnetization analyses. Iron modifies the decomposition process of the precursor and enhances its viscosity, which appears to favour the separation of Zn- and Fe-rich phases. As a consequence, two-phase systems of individual nanocrystals/nanoparticles (ZnO and ZnFe2O4) are formed. The large anisotropy constant, 106-107 erg cm-3, of the ZnFe2O4 nanoparticles and the concentration dependence of their magnetic energy barrier are explained in terms of interparticle interactions interlinked with finite size effects and high inversion degree; these factors also control the other parameters of importance for applications, including the blocking temperature (13-111 K), saturation magnetization (1.08-17.7 emu g-1 at 300 K, 4.6-44.8 emu g-1 at 5 K) and coercivity (85.4-491 Oe at 5 K). Magnetic dynamic results, particularly modelled by the Néel-Brown and Vogel-Fulcher laws, yield fitting parameters which validate the presence of concentration-dependent dipole-like interactions between ZnFe2O4 nanoparticles. A fraction of iron was found in the Fe2+ state, presumably substituting for Zn2+ in zinc oxide; however, the samples behave like ZnFe2O4 SPM nanoclusters/nanoparticles dispersed in a nonmagnetic ZnO particle assembly, rather than Zn(Fe)O dilute magnetic semiconductors. The relevance of the properties of the investigated material for specific applications is highlighted throughout the manuscript.

3.
Nanotechnology ; 30(44): 445501, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31342930

RESUMEN

Trilayer memory capacitors of control HfO2/floating gate of Ge nanoparticles in HfO2/tunnel HfO2/Si substrate deposited by magnetron sputtering and subsequently annealed are investigated for the first time for applications in radiation dosimetry. In the floating gate (FG), amorphous Ge nanoparticles (NPs) are arranged in two rows inside the HfO2 matrix. The HfO2 matrix is formed of orthorhombic/tetragonal nanocrystals (NCs). The adjacent thin films to the FG are also formed of orthorhombic/tetragonal HfO2 NCs. This phase is formed during annealing, in samples with thick control HfO2, in the presence of Ge, being induced by the stress. In the rest of the control oxide, HfO2 NCs are monoclinic. Orthorhombic HfO2 has ferroelectric properties and therefore enhances the memory window produced by charge storage in Ge NPs to above 6 V. The high sensitivity of 0.8 mV Gy-1 to α particle irradiation from a 241Am source was measured by monitoring the flatband potential during radiation exposure after electrical writing of the memory.

4.
Biomed Res Int ; 2015: 926513, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26504849

RESUMEN

The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Dimetilpolisiloxanos/farmacología , Durapatita/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Dimetilpolisiloxanos/química , Durapatita/química , Plata/química
5.
J Nanosci Nanotechnol ; 8(2): 717-21, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18464396

RESUMEN

In the last decade, considerable research effort was directed to the deposition of multilayer films with layer thicknesses in the nanometer range (superlattice coatings), in order to increase the performance of various cutting tools and machine parts. The goal of the present work was to investigate the main microstructural, mechanical and wear resistance characteristics of a superlattice coating, consisting of alternate multilayer ZrN/TiAIN films, with various bilayer periods (5 / 20 nm). The coatings were deposited by the cathodic arc method on Si, plain carbon steel and high speed steel substrates to be used as wear resistance surfaces. The multilayer structures were prepared by using shutters placed in front of each cathode (Zr and Ti+Al). The characteristics of multilayer structures (elemental and phase composition, texture, Vickers microhardness, thickness, adhesion, and wear resistance) were determined by using various techniques (AES, XPS, XRD, microhardness measurements, scratch, and tribological tests). A comparison with the properties of ZrN and TiAIN single-layer coatings was carried out.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...