Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Flex Print Electron ; 7(1)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528227

RESUMEN

The freeform generation of active electronics can impart advanced optical, computational, or sensing capabilities to an otherwise passive construct by overcoming the geometrical and mechanical dichotomies between conventional electronics manufacturing technologies and a broad range of three-dimensional (3D) systems. Previous work has demonstrated the capability to entirely 3D print active electronics such as photodetectors and light-emitting diodes by leveraging an evaporation-driven multi-scale 3D printing approach. However, the evaporative patterning process is highly sensitive to print parameters such as concentration and ink composition. The assembly process is governed by the multiphase interactions between solutes, solvents, and the microenvironment. The process is susceptible to environmental perturbations and instability, which can cause unexpected deviation from targeted print patterns. The ability to print consistently is particularly important for the printing of active electronics, which require the integration of multiple functional layers. Here we demonstrate a synergistic integration of a microfluidics-driven multi-scale 3D printer with a machine learning algorithm that can precisely tune colloidal ink composition and classify complex internal features. Specifically, the microfluidic-driven 3D printer can rapidly modulate ink composition, such as concentration and solvent-to-cosolvent ratio, to explore multi-dimensional parameter space. The integration of the printer with an image-processing algorithm and a support vector machine-guided classification model enables automated, in-situ pattern classification. We envision that such integration will provide valuable insights in understanding the complex evaporative-driven assembly process and ultimately enable an autonomous optimisation of printing parameters that can robustly adapt to unexpected perturbations.

2.
Adv Mater ; 32(17): e1907142, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32129917

RESUMEN

The synergistic integration of nanomaterials with 3D printing technologies can enable the creation of architecture and devices with an unprecedented level of functional integration. In particular, a multiscale 3D printing approach can seamlessly interweave nanomaterials with diverse classes of materials to impart, program, or modulate a wide range of functional properties in an otherwise passive 3D printed object. However, achieving such multiscale integration is challenging as it requires the ability to pattern, organize, or assemble nanomaterials in a 3D printing process. This review highlights the latest advances in the integration of nanomaterials with 3D printing, achieved by leveraging mechanical, electrical, magnetic, optical, or thermal phenomena. Ultimately, it is envisioned that such approaches can enable the creation of multifunctional constructs and devices that cannot be fabricated with conventional manufacturing approaches.

3.
Nanotechnology ; 31(17): 172001, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31805540

RESUMEN

The ability to seamlessly integrate functional materials into three-dimensional (3D) constructs has been of significant interest, as it can enable the creation of multifunctional devices. Such integration can be achieved with a multiscale, multi-material 3D printing strategy. This technology has enabled the creation of unique devices such as personalized tissue regenerative scaffolds, biomedical implants, 3D electronic devices, and bionic constructs which are challenging to realize with conventional manufacturing processes. In particular, the incorporation of nanomaterials into 3D printed devices can endow a wide range of constructs with tailorable mechanical, chemical, and electrical functionalities. This review highlights the advances and unique possibilities in the fabrication of novel electronic, biomedical, and bioelectronic devices that are realized by the synergistic integration of nanomaterials with 3D printing technologies.


Asunto(s)
Nanoestructuras , Impresión Tridimensional/instrumentación , Prótesis e Implantes , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA