Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22279197

RESUMEN

IntroductionThe Omicron BA.1/BA.2 wave in South Africa had lower hospitalisation and mortality than previous SARS-CoV-2 variants and was followed by an Omicron BA.4/BA.5 wave. This study compared admission incidence risk across waves, and the risk of mortality in the Omicron BA.4/BA.5 wave, to the Omicron BA.1/BA.2 and Delta waves. MethodsData from South Africas national hospital surveillance system, SARS-CoV-2 case linelist and Electronic Vaccine Data System were linked and analysed. Wave periods were defined when the country passed a weekly incidence of 30 cases/100,000 people. Mortality rates in the Delta, Omicron BA.1/BA.2 and Omicron BA.4/BA.5 wave periods were compared by post-imputation random effect multivariable logistic regression models. ResultsIn-hospital deaths declined 6-fold from 37,537 in the Delta wave to 6,074 in the Omicron BA.1/BA.2 wave and a further 7-fold to 837 in the Omicron BA.4/BA.5 wave. The case fatality ratio (CFR) was 25.9% (N=144,798), 10.9% (N=55,966) and 7.1% (N=11,860) in the Delta, Omicron BA.1/BA.2, and Omicron BA.4/BA.5 waves respectively. After adjusting for age, sex, race, comorbidities, health sector and province, compared to the Omicron BA.4/BA.5 wave, patients had higher risk of mortality in the Omicron BA.1/BA.2 wave (adjusted odds ratio [aOR] 1.43; 95% confidence interval [CI] 1.32-1.56) and Delta (aOR 3.22; 95% CI 2.98-3.49) wave. Being partially vaccinated (aOR 0.89, CI 0.86-0.93), fully vaccinated (aOR 0.63, CI 0.60-0.66) and boosted (aOR 0.31, CI 0.24-0.41); and prior laboratory-confirmed infection (aOR 0.38, CI 0.35-0.42) were associated with reduced risks of mortality. ConclusionOverall, admission incidence risk and in-hospital mortality, which had increased progressively in South Africas first three waves, decreased in the fourth Omicron BA.1/BA.2 wave and declined even further in the fifth Omicron BA.4/BA.5 wave. Mortality risk was lower in those with natural infection and vaccination, declining further as the number of vaccine doses increased.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268475

RESUMEN

BackgroundClinical severity of patients hospitalised with SARS-CoV-2 infection during the Omicron (fourth) wave was assessed and compared to trends in the D614G (first), Beta (second), and Delta (third) waves in South Africa. MethodsWeekly incidence of 30 laboratory-confirmed SARS-CoV-2 cases/100,000 population defined the start and end of each wave. Hospital admission data were collected through an active national COVID-19-specific surveillance programme. Disease severity was compared across waves by post-imputation random effect multivariable logistic regression models. Severe disease was defined as one or more of acute respiratory distress, supplemental oxygen, mechanical ventilation, intensive-care admission or death. Results335,219 laboratory-confirmed SARS-CoV-2 admissions were analysed, constituting 10.4% of 3,216,179 cases recorded during the 4 waves. In the Omicron wave, 8.3% of cases were admitted to hospital (52,038/629,617) compared to 12.9% (71,411/553,530) in the D614G, 12.6% (91,843/726,772) in the Beta and 10.0% (131,083/1,306,260) in the Delta waves (p<0.001). During the Omicron wave, 33.6% of admissions experienced severe disease compared to 52.3%, 63.4% and 63.0% in the D614G, Beta and Delta waves (p<0.001). The in-hospital case fatality ratio during the Omicron wave was 10.7%, compared to 21.5%, 28.8% and 26.4% in the D614G, Beta and Delta waves (p<0.001). Compared to the Omicron wave, patients had more severe clinical presentations in the D614G (adjusted odds ratio [aOR] 2.07; 95% confidence interval [CI] 2.01-2.13), Beta (aOR 3.59; CI: 3.49-3.70) and Delta (aOR 3.47: CI: 3.38-3.57) waves. ConclusionThe trend of increasing cases and admissions across South Africas first three waves shifted in Omicron fourth wave, with a higher and quicker peak but fewer admitted patients, who experienced less clinically severe illness and had a lower case-fatality ratio. Omicron marked a change in the SARS-CoV-2 epidemic curve, clinical profile and deaths in South Africa. Extrapolations to other populations should factor in differing vaccination and prior infection levels.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268116

RESUMEN

BackgroundThe SARS-CoV-2 Omicron variant of concern (VOC) almost completely replaced other variants in South Africa during November 2021, and was associated with a rapid increase in COVID-19 cases. We aimed to assess clinical severity of individuals infected with Omicron, using S Gene Target Failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. MethodsWe performed data linkages for (i) SARS-CoV-2 laboratory tests, (ii) COVID-19 case data, (iii) genome data, and (iv) the DATCOV national hospital surveillance system for the whole of South Africa. For cases identified using Thermo Fisher TaqPath COVID-19 PCR, infections were designated as SGTF or non-SGTF. Disease severity was assessed using multivariable logistic regression models comparing SGTF-infected individuals diagnosed between 1 October to 30 November to (i) non-SGTF in the same period, and (ii) Delta infections diagnosed between April and November 2021. ResultsFrom 1 October through 6 December 2021, 161,328 COVID-19 cases were reported nationally; 38,282 were tested using TaqPath PCR and 29,721 SGTF infections were identified. The proportion of SGTF infections increased from 3% in early October (week 39) to 98% in early December (week 48). On multivariable analysis, after controlling for factors associated with hospitalisation, individuals with SGTF infection had lower odds of being admitted to hospital compared to non-SGTF infections (adjusted odds ratio (aOR) 0.2, 95% confidence interval (CI) 0.1-0.3). Among hospitalised individuals, after controlling for factors associated with severe disease, the odds of severe disease did not differ between SGTF-infected individuals compared to non-SGTF individuals diagnosed during the same time period (aOR 0.7, 95% CI 0.3-1.4). Compared to earlier Delta infections, after controlling for factors associated with severe disease, SGTF-infected individuals had a lower odds of severe disease (aOR 0.3, 95% CI 0.2-0.5). ConclusionEarly analyses suggest a reduced risk of hospitalisation among SGTF-infected individuals when compared to non-SGTF infected individuals in the same time period. Once hospitalised, risk of severe disease was similar for SGTF- and non-SGTF infected individuals, while SGTF-infected individuals had a reduced risk of severe disease when compared to earlier Delta-infected individuals. Some of this reducton is likely a result of high population immunity.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21266068

RESUMEN

IntroductionGlobally, there have been more than 404 million cases of SARS-CoV-2, with 5.8 million confirmed deaths, as of February 2022. South Africa has experienced four waves of SARS-CoV-2 transmission, with the second, third, and fourth waves being driven by the Beta, Delta, and Omicron variants, respectively. A key question with the emergence of new variants is the extent to which they are able to reinfect those who have had a prior natural infection. RationaleWe developed two approaches to monitor routine epidemiological surveillance data to examine whether SARS-CoV-2 reinfection risk has changed through time in South Africa, in the context of the emergence of the Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. We analyze line list data on positive tests for SARS-CoV-2 with specimen receipt dates between 04 March 2020 and 31 January 2022, collected through South Africas National Notifiable Medical Conditions Surveillance System. Individuals having sequential positive tests at least 90 days apart were considered to have suspected reinfections. Our routine monitoring of reinfection risk included comparison of reinfection rates to the expectation under a null model (approach 1) and estimation of the time-varying hazards of infection and reinfection throughout the epidemic (approach 2) based on model-based reconstruction of the susceptible populations eligible for primary and second infections. Results105,323 suspected reinfections were identified among 2,942,248 individuals with laboratory-confirmed SARS-CoV-2 who had a positive test result at least 90 days prior to 31 January 2022. The number of reinfections observed through the end of the third wave in September 2021 was consistent with the null model of no change in reinfection risk (approach 1). Although increases in the hazard of primary infection were observed following the introduction of both the Beta and Delta variants, no corresponding increase was observed in the reinfection hazard (approach 2). Contrary to expectation, the estimated hazard ratio for reinfection versus primary infection was lower during waves driven by the Beta and Delta variants than for the first wave (relative hazard ratio for wave 2 versus wave 1: 0.71 (CI95: 0.60-0.85); for wave 3 versus wave 1: 0.54 (CI95: 0.45-0.64)). In contrast, the recent spread of the Omicron variant has been associated with an increase in reinfection hazard coefficient. The estimated hazard ratio for reinfection versus primary infection versus wave 1 was 1.75 (CI95: 1.48-2.10) for the period of Omicron emergence (01 November 2021 to 30 November 2021) and 1.70 (CI95: 1.44-2.04) for wave 4 versus wave 1. Individuals with identified reinfections since 01 November 2021 had experienced primary infections in all three prior waves, and an increase in third infections has been detected since mid-November 2021. Many individuals experiencing third infections had second infections during the third (Delta) wave that ended in September 2021, strongly suggesting that these infections resulted from immune evasion rather than waning immunity. ConclusionPopulation-level evidence suggests that the Omicron variant is associated with substantial ability to evade immunity from prior infection. In contrast, there is no population-wide epidemiological evidence of immune escape associated with the Beta or Delta variants. This finding has important implications for public health planning, particularly in countries like South Africa with high rates of immunity from prior infection. Further development of methods to track reinfection risk during pathogen emergence, including refinements to assess the impact of waning immunity, account for vaccine-derived protection, and monitor the risk of multiple reinfections will be an important tool for future pandemic preparedness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...