Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410815, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925600

RESUMEN

Small-molecule receptors are increasingly employed to probe various functional groups for (bio)chemical analysis. However, differentiation of polyfunctional analogs sharing multiple functional groups remains challenging for conventional mono- and bidentate receptors because their insufficient number of binding sites limits interactions with the least reactive yet property-determining functional group. Herein, we introduce 6-thioguanine (TG) as a supramolecular receptor for unique tridentate receptor-analyte complexation,achieving ≥ 95% identification accuracy among 16 polyfunctional analogs across three scenarios: glycerol derivatives, disubstituted propanes, and vicinal diols. Crucially, we demonstrate distinct spectral changes induced by the tridentate interaction between TG's three anchoring points and all the analyte's functional groups, even the least reactive ones. Notably, H-bond networks formed in the TG-analyte complexes demonstrate additive effect in binding strength originating from good bond linearity, cooperativity, and resonance, thus strengthens complexation events and amplifies the differences in spectral changes induced among analytes. It also enhances spectral consistency by selectively form a sole configuration that is stronger than the respective analyte-analyte interaction. Finally, we achieve 95.4% accuracy for multiplex identification of a mixture consisting of multiple polyfunctional analogs. We envisage that extension to other multidentate non-covalent interactions enables the development of interference-free small molecule-based sensors for various (bio)chemical analysis applications.

2.
ACS Nano ; 17(22): 23132-23143, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37955967

RESUMEN

Rapid, universal, and accurate identification of bacteria in their natural states is necessary for on-site environmental monitoring and fundamental microbial research. Surface-enhanced Raman scattering (SERS) spectroscopy emerges as an attractive tool due to its molecule-specific spectral fingerprinting and multiplexing capabilities, as well as portability and speed of readout. Here, we develop a SERS-based surface chemotaxonomy that uses bacterial extracellular matrices (ECMs) as proxy biosignatures to hierarchically classify bacteria based on their shared surface biochemical characteristics to eventually identify six distinct bacterial species at >98% classification accuracy. Corroborating with in silico simulations, we establish a three-way inter-relation between the bacteria identity, their ECM surface characteristics, and their SERS spectral fingerprints. The SERS spectra effectively capture multitiered surface biochemical insights including ensemble surface characteristics, e.g., charge and biochemical profiles, and molecular-level information, e.g., types and numbers of functional groups. Our surface chemotaxonomy thus offers an orthogonal taxonomic definition to traditional classification methods and is achieved without gene amplification, biochemical testing, or specific biomarker recognition, which holds great promise for point-of-need applications and microbial research.


Asunto(s)
Bacterias , Espectrometría Raman , Espectrometría Raman/métodos , Biomarcadores , Aprendizaje Automático
3.
Chem Sci ; 13(37): 11009-11029, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320477

RESUMEN

Speedy, point-of-need detection and monitoring of small-molecule metabolites are vital across diverse applications ranging from biomedicine to agri-food and environmental surveillance. Nanomaterial-based sensor (nanosensor) platforms are rapidly emerging as excellent candidates for versatile and ultrasensitive detection owing to their highly configurable optical, electrical and electrochemical properties, fast readout, as well as portability and ease of use. To translate nanosensor technologies for real-world applications, key challenges to overcome include ultralow analyte concentration down to ppb or nM levels, complex sample matrices with numerous interfering species, difficulty in differentiating isomers and structural analogues, as well as complex, multidimensional datasets of high sample variability. In this Perspective, we focus on contemporary and emerging strategies to address the aforementioned challenges and enhance nanosensor detection performance in terms of sensitivity, selectivity and multiplexing capability. We outline 3 main concepts: (1) customization of designer nanosensor platform configurations via chemical- and physical-based modification strategies, (2) development of hybrid techniques including multimodal and hyphenated techniques, and (3) synergistic use of machine learning such as clustering, classification and regression algorithms for data exploration and predictions. These concepts can be further integrated as multifaceted strategies to further boost nanosensor performances. Finally, we present a critical outlook that explores future opportunities toward the design of next-generation nanosensor platforms for rapid, point-of-need detection of various small-molecule metabolites.

4.
Angew Chem Int Ed Engl ; 61(33): e202207447, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35672258

RESUMEN

Gas-phase surface-enhanced Raman scattering (SERS) remains challenging due to poor analyte affinity to SERS substrates. The reported use of capturing probes suffers from concurrent inconsistent signals and long response time due to the formation of multiple potential probe-analyte interaction orientations. Here, we demonstrate the use of multiple non-covalent interactions for ring complexation to boost the affinity of small gas molecules, SO2 and NO2 , to our SERS platform, achieving rapid capture and multiplex detection down to 100 ppm. Experimental and in-silico studies affirm stable ring complex formation, and kinetic investigations reveal a 4-fold faster response time compared to probes without stable ring complexation capability. By synergizing spectral concatenation and support vector machine regression, we achieve 91.7 % accuracy for multiplex quantification of SO2 and NO2 in excess CO2 , mimicking real-life exhausts. Our platform shows immense potential for on-site exhaust and air quality surveillance.


Asunto(s)
Gases , Dióxido de Nitrógeno , Monitoreo del Ambiente , Espectrometría Raman
5.
ACS Nano ; 16(2): 2629-2639, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35040314

RESUMEN

Population-wide surveillance of COVID-19 requires tests to be quick and accurate to minimize community transmissions. The detection of breath volatile organic compounds presents a promising option for COVID-19 surveillance but is currently limited by bulky instrumentation and inflexible analysis protocol. Here, we design a hand-held surface-enhanced Raman scattering-based breathalyzer to identify COVID-19 infected individuals in under 5 min, achieving >95% sensitivity and specificity across 501 participants regardless of their displayed symptoms. Our SERS-based breathalyzer harnesses key variations in vibrational fingerprints arising from interactions between breath metabolites and multiple molecular receptors to establish a robust partial least-squares discriminant analysis model for high throughput classifications. Crucially, spectral regions influencing classification show strong corroboration with reported potential COVID-19 breath biomarkers, both through experiment and in silico. Our strategy strives to spur the development of next-generation, noninvasive human breath diagnostic toolkits tailored for mass screening purposes.


Asunto(s)
COVID-19 , Humanos , Tamizaje Masivo , Sistemas de Atención de Punto , SARS-CoV-2 , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...