Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928870

RESUMEN

To investigate the changes in phenols and antioxidant capacity in fermented grains during different stages of the fermentation process (Xiasha, Zaosha, and single-round stages) of Maotai-flavored liquor, the total phenolic contents of 61 samples, collected in different stages, were analyzed via the Folin-Ciocalteu method, and the phenolic compounds were then identified by high-performance liquid chromatography (HPLC). Subsequently, the antioxidant activities were determined using the DPPH free radical scavenging rate and ABTS and FRAP antioxidant capacities. The correlations among the total phenolic contents, individual phenolics, and three antioxidant activities of the samples were analyzed. The results show that the total phenolic contents of the fermented samples did not change significantly in the Xiasha and Zaosha stages but showed an upward trend in the single-round stage. A total of 12 phenol acids were identified in the fermented grains, including 5 phenolic acids (e.g., ferulic acid and caffeic acid), 4 flavonoids (e.g., luteolin and apigenin), and 3 proanthocyanidins (e.g., apigeninidin), for which the DPPH free radical scavenging rates and ABTS and FRAP antioxidant capacities of all of the fermented grain samples ranged from 78.91 ± 4.09 to 98.57 ± 1.52%, 3.23 ± 0.72 to 13.69 ± 1.40 mM Trolox, and 5.06 ± 0.36 to 14.10 ± 0.69 mM FeSO4, respectively. The total phenolic contents of the fermented grain samples were significantly and positively correlated with the ABTS and FRAP (p ≤ 0.05), while no significant correlations were found between total phenolic content and DPPH. In general, the total phenolic content, phenolic substances, and antioxidant capacity of the fermented grains exhibited changes during the fermentation process in liquor production, and the phenolic components contributed more to the antioxidant properties of the fermented grains. The present study provides a theoretical reference for analyzing the dynamic changes and antioxidant properties of functional phenolic components in fermented grains.

2.
Food Chem X ; 23: 101531, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38911472

RESUMEN

To investigate the changes of phenolic metabolite during different grains fermentation stages of Chinse Baijiu, the ultra-performance liquid chromatography-quadrupole time of-flight mass spectrometry (UHPLC-QTOF-MS) was applied to identify and analyze the different phenolic metabolites, combined with principal component analysis and partial least squares discriminant analysis. Results indicated that significant differences in phenolic metabolites during different fermentation stages were found. Among the 231 phenolic metabolites detected, 36, 31, 19, 23, 14, and 50 differential phenolic metabolites were screened between different groups using partial least squares discriminant analysis. Twelve metabolic pathways with high correlation of differential phenolic metabolites and 23 main participating differential metabolites were identified through KEGG metabolic pathway enrichment analysis. The present study preliminarily revealed the differences of phenolic metabolites at different fermentation stages, and providing a theoretical basis for the further improving of the taste and quality of Chinese Baijiu.

3.
Foods ; 12(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37685247

RESUMEN

Polyphenols, as common components with various functional activities in plants, have become a research hotspot. However, researchers have found that the bioavailability and bioactivity of plant polyphenols is generally low because they are usually in the form of tannins, anthocyanins and glycosides. Polyphenol-rich fermented foods (PFFs) are reported to have better bioavailability and bioactivity than polyphenol-rich foods, because polyphenols are used as substrates during food fermentation and are hydrolyzed into smaller phenolic compounds (such as quercetin, kaempferol, gallic acid, ellagic acid, etc.) with higher bioactivity and bioavailability by polyphenol-associated enzymes (PAEs, e.g., tannases, esterases, phenolic acid decarboxylases and glycosidases). Biotransformation pathways of different polyphenols by PAEs secreted by different microorganisms are different. Meanwhile, polyphenols could also promote the growth of beneficial bacteria during the fermentation process while inhibiting the growth of pathogenic bacteria. Therefore, during the fermentation of PFFs, there must be an interactive relationship between polyphenols and microorganisms. The present study is an integration and analysis of the interaction mechanism between PFFs and microorganisms and is systematically elaborated. The present study will provide some new insights to explore the bioavailability and bioactivity of polyphenol-rich foods and greater exploitation of the availability of functional components (such as polyphenols) in plant-derived foods.

4.
Foods ; 11(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35454674

RESUMEN

To investigate the physicochemical, structural, and rheological characteristics of starch from wheat cultivars varying in grain hardness index employed in making jiuqu and to interrelate grain hardness index with physicochemical and structural properties of starch. Starch extracted therefrom was investigated for structural and physicochemical properties. Starch granules showed relatively wide granule size distribution; large size granules showed lenticular shapes while medium and small size granules exhibited spherical or irregular shapes. Starch from wheat with a lower grain hardness index exhibited a relatively higher degree of crystallinity. Chain-length profiles of amylopectin showed distinct differences; among the fractions of fa, fb1, fb2, and fb3 representing the weight-based chain-length proportions in amylopectin, the fa fractions ranged from 19.7% to 21.6%, the fb1 fractions ranged from 44.4% to 45.6%, the fb2 fractions ranged from 16.2% to 17.0%, and the fb3 fractions ranged from 16.1% to 18.8%, respectively. To, Tp, Tc, and ∆H of starch ranged from 57.8 to 59.7 °C, 61.9 to 64.2 °C, 67.4 to 69.8 °C, and 11.9 to 12.7 J/g, respectively. Peak viscosity, hot pasting viscosity, cool pasting viscosity, breakdown, and setback of starch ranged from 127 to 221 RVU, 77 to 106 RVU, 217 to 324 RVU, 44 to 116 RVU, and 137 to 218 RVU, respectively. Both G' and G" increased in the frequency range of 0.628 to 125.6 rad/s; the wheat starch gels were more solid-like during the whole range of frequency sweep.

5.
Molecules ; 26(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34443387

RESUMEN

Sorghum is the major raw material for the production of Chinese Baijiu (Chinese liquor) and has a great effect on the flavor of Baijiu. Volatiles in cooked glutinous and non-glutinous sorghum samples were extracted using solid-phase microextraction (SPME) and analyzed via comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and gas chromatography-olfactometry/mass spectrometry (GC-O/MS). A total of 145 volatile compounds and 52 potent odorant compounds were identified from both sorghum types according to the retention index, MS, aroma, and standards. Based on their aroma features, the compounds were grouped into eight general categories, and the intensities of each aroma group were summed. Moreover, most of the compounds detected in the cooked sorghums were also detected in commercial Chinese Baijiu, indicating that the aroma compounds produced during the sorghum cooking process have a direct and significant influence on the final flavor quality of Baijiu.


Asunto(s)
Culinaria , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Olfatometría , Sorghum/química , Microextracción en Fase Sólida , Temperatura , Factores de Tiempo , Compuestos Orgánicos Volátiles/análisis
6.
J Agric Food Chem ; 67(28): 7916-7925, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31180675

RESUMEN

Two-step high-performance liquid chromatography (HPLC) separation in combination with taste dilution analysis was used to screen the retronasal burnt aroma compounds in soy sauce aroma-type Chinese Baijiu (Chinese traditional liquor). A major retronasal burnt aroma region was purified by Sephadex LH-20 column chromatography and HPLC separation from the soy sauce aroma-type Baijiu sample. A novel retronasal burnt aroma compound was identified as 6-(2-formyl-5-methyl-1H-pyrrol-1-yl)hexanoic acid (1) by means of high-resolution mass spectrometry and 1D/2D nuclear magnetic resonance. The retronasal burnt aroma threshold of compound 1 was determined to be 209.5 µg/L in 53% ethanol aqueous solution. Quantitative analysis showed that the concentration of compound 1 ranged from below the limit of quantitation (3.8 µg/L) to 224.2 µg/L in the Baijiu samples. Moreover, the sensory evaluation also revealed that compound 1 may contribute to the retronasal burnt aroma of the Baijiu at its subthreshold concentration by the additive effect with the recently reported retronasal burnt aroma compound 2-hydroxymethyl-3,6-diethyl-5-methylpyrazine.


Asunto(s)
Caproatos/química , Aromatizantes/química , Alimentos de Soja/análisis , Adulto , China , Cromatografía Líquida de Alta Presión , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Odorantes/análisis , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...