Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 196(2): 300-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24187084

RESUMEN

The cell envelope of Gram-negative bacteria is an essential organelle that is important for cell shape and protection from toxic compounds. Proteins involved in envelope biogenesis are therefore attractive targets for the design of new antibacterial agents. In a search for new envelope assembly factors, we screened a collection of Escherichia coli deletion mutants for sensitivity to detergents and hydrophobic antibiotics, a phenotype indicative of defects in the cell envelope. Strains lacking yciM were among the most sensitive strains of the mutant collection. Further characterization of yciM mutants revealed that they display a thermosensitive growth defect on low-osmolarity medium and that they have a significantly altered cell morphology. At elevated temperatures, yciM mutants form bulges containing cytoplasmic material and subsequently lyse. We also discovered that yciM genetically interacts with envC, a gene encoding a regulator of the activity of peptidoglycan amidases. Altogether, these results indicate that YciM is required for envelope integrity. Biochemical characterization of the protein showed that YciM is anchored to the inner membrane via its N terminus, the rest of the protein being exposed to the cytoplasm. Two CXXC motifs are present at the C terminus of YciM and serve to coordinate a redox-sensitive iron center of the rubredoxin type. Both the N-terminal membrane anchor and the C-terminal iron center of YciM are important for function.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bacteriólisis , Medios de Cultivo/química , Endopeptidasas/metabolismo , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/efectos de la radiación , Proteínas de Escherichia coli/genética , Eliminación de Gen , Calor , Hierro/metabolismo , Proteínas de la Membrana/genética , Microscopía , Datos de Secuencia Molecular , Presión Osmótica , Unión Proteica , Mapeo de Interacción de Proteínas , Alineación de Secuencia
2.
mBio ; 4(6): e00912-13, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24327342

RESUMEN

UNLABELLED: Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. IMPORTANCE: The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics active against this bacterium. The pathogenic power of P. aeruginosa is mediated by an arsenal of extracellular virulence factors, most of which are stabilized by disulfide bonds. Thus, targeting the machinery that introduces disulfide bonds appears to be a promising strategy to combat P. aeruginosa. Here, we unraveled the oxidative protein folding system of P. aeruginosa in full detail. The system uniquely consists of two membrane proteins that generate disulfide bonds de novo to deliver them to P. aeruginosa DsbA1 (PaDsbA1), a soluble oxidoreductase. PaDsbA1 in turn donates disulfide bonds to secreted proteins, including virulence factors. Disruption of the disulfide bond formation machinery dramatically decreases P. aeruginosa virulence, confirming that disulfide formation systems are valid targets for the design of antimicrobial drugs.


Asunto(s)
Disulfuros/metabolismo , Redes y Vías Metabólicas/genética , Periplasma/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Humanos , Periplasma/química , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Pseudomonas aeruginosa/genética , Factores de Virulencia/metabolismo
3.
Methods Mol Biol ; 966: 325-36, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299744

RESUMEN

Many proteins secreted to the bacterial cell envelope contain cysteine residues that are involved in disulfide bonds. These disulfides either play a structural role, increasing protein stability, or reversibly form in the catalytic site of periplasmic oxidoreductases. Monitoring the in vivo redox state of cysteine residues, i.e., determining whether those cysteines are oxidized to a disulfide bond or not, is therefore required to fully characterize the function and structural properties of numerous periplasmic proteins. Here, we describe a reliable and rapid method based on trapping reduced cysteine residues with 4'-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), a maleimide compound. We use the Escherichia coli DsbA protein to illustrate the method, which can be applied to all envelope proteins.


Asunto(s)
Cisteína/química , Disulfuros/química , Periplasma/química , Proteínas/química , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Oxidación-Reducción , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...